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Abstract. A classic general definition of the completeness of an ontology 
– or, more generally, a knowledge base (KB) – is: the degree to which 
information required  to  satisfy a  specification are  present  in  this  KB. 
Most  current  completeness  measures  are  metrics  about  relatively  how 
many objects from a reference KB are represented in the evaluated KB. 
There  also  are  many  tools  implementing  in  ad  hoc ways  particular 
measures  for  evaluating  the  degree  to  which  a  KB  complies  with 
particular  design  rules  (ontology  patterns,  best  practices,  methodo-
logies, ...). The present article shows how the “semantic connectedness” 
notion – i.e.,  (relatively) how many objects in a KB satisfy a semantic  
specification – can be precisely defined for specifying such measures and 
implementing or extending them in a generic way. These completeness 
measures are not of the above cited kind (they do not require a reference 
KB) and they allow the specification of KB quality measures not usually 
categorized as completeness measures. This article introduces and defines 
various  semantic  connectedness  notions,  via  various  functions  (and 
various kinds of parameters) which all exploit the same general idea. This 
idea and definitions are the main contributions of this article since they 
answer several important research questions which can be merged into 
the following one: how to define semantic connectedness in a way that is  
generic,  automatically  checkable  and  that  supports  the  writing  of 
ontology design rules generalizing current ones and better leading to the 
increase or maximization of the entering of particular relations and then 
of inferences from them. As an illustration of the implemented tool and 
validations  made  for  the  introduced  approach,  this  article  also  shows 
i) one interface of the tool, displaying interesting types of relations and 
parameters to use for checking semantic connectednesses, and ii) some 
results of the evaluation of a well known foundational ontology.
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1. Introduction

Dataset completeness. As noted in [1], a survey on quality assessment for Linked Data, 
dataset completeness commonly refers to a degree to which the “information required 
to satisfy some given criteria or query” are present in the considered dataset. Seen as a 
set of information objects, an ontology – or, more generally, a knowledge base (KB) – 
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is a dataset (in [1] too). KB objects are either types or non-type objects. These last ones 
are either statements or individuals. A statement is a relation or a non-empty set of 
relations. In the terminology associated to the RDF(S) model [2], relations are binary, 
often loosely referred to as “properties” and more precisely as “property instances”.

Extrinsic (dataset) completeness. In surveys referring to the completeness of an 
ontology or KB, e.g.  [1,3,4], this notion is associated to the comparison of the KB to 
(real or idealized) reference KBs or to expected results when using such other KBs – 
hence,  this  article  calls  this  notion  “extrinsic  model  based  completeness”.  E.g., 
completeness oracles [5], i.e. rules or queries estimating the information missing in the 
KB for answering a given query correctly, refer to an idealized KB. [3] distinguishes 
“gold  standard-based”,  “corpus-based”  and  “task-based”  approaches.  [1]  refers  to 
schema/property/population completeness, and almost all metrics it gives for them are 
about  relatively how many objects  from a  reference  dataset are  represented  in  the 
evaluated dataset. 

Intrinsic completeness and, more generally, connectedness. This article gives a 
generic  model  to  specify  measures  for  the  “semantic  (intrinsic)  completeness” 
notion(s). Each of these measures is a metric about  relatively how many objects in a 
given set satisfy a semantic specification, i.e. one that specifies the semantic relations 
that  each  evaluated  object  should  be  source  or  destination  of.  More  generally, 
“semantic  connectedness” covers such a completeness  as well  as a simple count of 
objects  satisfying the semantic  specification. Thus,  this  notion is not similar  to  the 
“ontology completeness” of [6] where four “completeness theorems” define whether a 
KB is complete wrt.  a specification stated in first-order  logic. In [4],  based on the 
descriptions  and  examples  it  gives,  what  its  authors  call  “intrinsic  completeness” 
covers  semantic  completeness  (“ontology  compliance”  for  these  authors)  and 
seemingly also completeness oracles.

Purposes. Unlike extrinsic model based completeness, semantic completeness is 
adapted  for  evaluating  the  degree  to  which  a  given  set  of  objects  complies  with 
ontology design recommendations (ODRs),  such as particular  ontology patterns  [7], 
best practices [8] or methodologies (e.g. Methontology, Diligent, NeOn and Moddals). 
Such an evaluation eases the task of selecting or creating better KBs for knowledge 
sharing, retrieval, comparison or inference purposes.

Need for a generic specification model. Many KB evaluation measures  can be 
viewed as connectedness measures for particular relation types. Many checks performed 
by  ontology  checking  tools  – e.g.  Oops!  [9]  and  OntoSeer  [10] –  also evaluate 
particular  cases of  semantic  connectedness.  However,  it  seems  that  no  previous 
research has provided a generic way to specify semantic connectedness measures and 
thence  enable  their  categorization  and  application-dependent  generalizations 
(executable non-predefined ones),  whichever the evaluated kinds of  relations – and 
hence,  whichever  the  domain,  which  explains  why  no  domain,  dataset  or  kind  of 
datasets is referred to in this article. It is then also difficult to realize that many existing 
KB evaluation criteria or methods are particular cases of a same generic one.

Related  research questions. In  addition to  this  genericity  issue,  some research 
questions  – which  are  related  and  apparently  original –  are  then:  i)  how  to  define 
semantic connectedness, more precisely than above, and not only in a generic way but 
also  one  that  is  automatically  checkable,  ii) how  to  extend  ODRs  and  represent 
knowledge for supporting an automatic checking of the use of particular relations while 
still  allowing knowledge providers to sometimes disagree with such a use (this for 
example rules out checking that a particular relation is asserted whenever its signature 

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693918


allows such an assertion), and iii) how to specify semantic connectednesses for the 
increase or maximization of the entering of particular relations by knowledge providers 
and then of inferences from these relations (e.g.,  especially useful  relations such as 
subtype and exclusion relations, or type relations to useful meta-classes such as those 
of  the  OntoClean  methodology  [11]).  These  questions  are  important  when  the 
representations  have  to  be  precise  or  reusable,  as  is  for  example  the  case  with 
foundational ontologies, or ontologies for knowledge sharing purposes.

Plan. To answer these research questions – the answers being the main contributions 
of  this article  – Section 2 introduces the proposed generic model by describing the 
parameters of C*, one possible polymorphic function theoretically usable for checking 
any of the semantic connectednesses described in this article. For practical uses, CN, 
CN–  and  C%,  three  restrictions  of  C*,  are  also  introduced.  Any  particular  set  of 
parameters of C* specifies one particular connectedness check. For genericity purposes 
too,  the notion of aboutness is introduced as a generalization of the notions of meta-
statements,  modalities  and  negations.  Then,  via  examples,  Section 3  illustrates  the 
flexibility  and  genericity  of  the  approach.  A simple  user  interface  showing  some 
interesting  kinds  of  parameters  is  also  provided.  For  explanatory  and  motivational 
purposes,  all  this is  provided before Section 4 more precisely defines  C%, CN and 
CN–;  however,  Section 4  can  also  be  read  first.  For  particular parameters,  formal 
definitions are given; from them, definitions for other parameters can be derived.

2. Genericity: Generic Functions (C*, CN, CN , C%) , “Aboutness” ‐ Relations

C* and the kinds of parameters it requires. Theoretically, a complex enough function 
– here  named  C* –  could  implement  all elsewhere  implemented  semantic 
connectedness checks, although its code might have to be often updated to handle new 
features. Since the basic kinds of data used by C* can be typed and aggregated in 
different ways, C* could have different kinds of parameters, i.e. different signatures, 
even using “named parameters” (alias “keyword arguments”, as opposed to positional 
parameters). In this article, to ease the readability and understanding of the  proposed 
handy  restrictions  of  C*,  positional  parameters  are  used  and  the  selected  untyped 
signature of C* is “(objSelection1, objSelection2, constraints,  metric,  nonCorePara-
meters)”. Before describing these parameters, it should be noted that, to be generic, C* 
has to be polymorphic: for each parameter, C* should accept different kinds of objects, 
e.g. a set of objects, or a set of criteria to retrieve such objects, or a function to make 
that retrieval.

 Together,  objSelection1 and  objSelection2 specify the set  of objects and/or 
relations to be checked, i.e. i) the set of objects from which particular relations 
are  to  be  checked,  and/or  ii) the  set  of  particular  relations  to  check,  and 
possibly iii) the set of objects that the destinations of the checked relations 
may be. In the use examples for the handy  restrictions of C* given  below, 
i) objSelection1 is a set, typically “{every rdfs:Class}” to mean that the set of 
objects to be checked is the set of classes in the current KB, i i) objSelection2 is 
a set, e.g. “{rdfs:subClassOf, owl:equivalentClass}” to mean that subClassOf 
relations and equivalentClass relations should be checked, and iii) the set of 
possible destination objects for these relations is not specified: by default, any 
destination is allowed.



 The 3rd parameter specifies constraints that the “objects and/or relations selected 
via the first two parameters” should satisfy. E.g.: for each selected object and 
relation type, there should be at least one relation of that type from this object.

 The 4th parameter specifies the metric to be used for reporting how many – or 
relatively how many – of the “objects and/or relations selected via the first two 
parameters”  comply  with  the  “constraints  specified  via  the  3rd parameter”. 
Examples of metrics and metric names are: i) “N_obj”, the number of compliant 
selected source objects, ii) “N_rel”, the number of compliant relations from&to 
the selected objects, iii) “L_obj–”, the list of non-compliant source objects, iv) 
“%_obj”, the ratio of N_obj to the number of selected objects, and v) “%_rel”, 
the ratio of N_rel to the number of selected relations. More complex metrics can 
be used, such as those of the kinds described by [12] (e.g. “precision and recall” 
based ones) and [13] (e.g. “Tree Balance” and “Concept Connectivity”).

 The 5th parameter specifies objects that are not essential to the specification of a 
semantic connectedness, e.g. parameters about how to store or display results 
and error messages.

 To  sum  up,  the  above  distinctions  (<selections,  constraints,  metric>)  and 
associated parameters seem to support the dispatching of the basic kinds of 
data required by C* into a complete set of exclusive categories for these basic 
kinds of data, i.e., into a partition for them. Thus, all the data can be dispatched 
without ambiguities about where to dispatch them. The above parameters can 
also be seen as an handy way to describe parts of the model used in this article 
(the more common way to describe a model is to define tuples of objects).

CN, CN– and C% as handy restrictions of C*. CN, CN– and C% only have the 
first three parameters of C*. Using CN is  like using C* with the  N_obj metric as  4th 

parameter.  CN– is like C* with the L_obj– metric (it is more useful during KB building 
than when comparing KBs).  C% is like C* with the %_obj metric. From now on, unless 
otherwise specified,  i) descriptions about C* are  also about CN, CN– and C%,  and 
ii) the word “specification” refers to a semantic connectedness specification for a KB, 
typically via C% since it allows the checking of a 100% compliance. Section 4 further 
defines these functions. Before that, Section 3 illustrates some uses of C% and CN–.

Conventions. In  this  article,  a  type is  either  a  class or  a  relation  type (alias, 
“property”  for binary relations). Identifiers for relation types have a lowercase initial 
while other object identifiers have an uppercase initial. “OWL” refers to OWL-2 [14], 
the W3C ontology for an extension of the SROIQ description logic. Some of its types 
are used below for illustration purposes,  mainly in example specifications. “RDFS” 
refers  to  RDFS 1.1 [2].  OWL  types are  prefixed  by  “owl:”,  and  RDFS  types by 
“rdfs:”. The other types used in this article are declared or defined in an ontology 
named “Sub” [15] (a good part of it is about subtypes, subparts and similar relations; 
this ontology has over 200 types). E.g., Sub  includes sub:owl2_implication,  the most 
general type of implication that an OWL inference engine can exploit or implement. In 
accordance with the paragraph about genericity below, “=>” and symbols derived from 
it are not prefixed in the examples and definitions. Two statements or two non-empty 
types are in  exclusion if they  cannot have a shared specialization or instance, i.e., if 
having one is considered an error. E.g., owl:disjointWith is a type of exclusion relation 
between two classes.

Positive statements, negations, contextualizations and aboutness relations. In this 
article, i) a statement is a relation or a non-empty set of relations, ii) a meta-statement 



is a statement that is – or can be translated into – a relation stating things  about a(n 
inner) statement (generally, the source of the relation), and iii) this relation is called an 
aboutness relation.  A negated  statement  can  be  seen  as  –  or  represented  via,  or 
converted into – a statement using a “not” relation expressing a “not” operator. A meta-
statement that modifies the truth status of a statement – e.g., via a relation expressing a 
negation, a modality, a fuzzy logic coefficient or that the inner statement is true only at  
a  particular  time or place or according  to a  particular  person – is  a  contextualizing 
statement (alias, context) for its inner statement, the contextualized statement. Thus, a 
relation that changes the truth status of a statement is a contextualizing relation, e.g. (in 
this  article)  a  “not”  or  “necessarily  not”  relation.  This  article  assumes  that,  if  a 
contextualizing  statement  does  not  directly  use  a  contextualizing  relation,  this 
statement is automatically converted (before calling C* or when the KB is loaded) into 
one  that  uses a  contextualizing  binary  relation.  A statement  is  either  positive  (i.e. 
without meta-statement, or with a meta-statement that simply annotates it instead of 
contextualizing it), negative (alias, negated), or contextualized but not negated. In this 
article, it is assumed that all contextualizing binary relation types used in the KB are 
defined  as  subtypes  of sub:contextualization.  All  these  previous  notions  enable a 
generalization of the specification and checking of what the introduction called ODRs 
(ontology design recommendations): from “the assertion of particular relations between 
particular objects” (the  classic kinds of specifications)  to “the  assertion, negation or 
other contextualization of these relations”. This simple change solves the three “related 
research questions” listed in the introduction. Indeed: 

 Knowledge providers  can now always state  something about an advocated 
relation – e.g. that it is true, false or true only in a particular case – and thus 
comply with the above cited extended kind of specification, whereas it is not 
always relevant or possible to assert a particular (classically) advocated relation. 
Then, a provided statement about an advocated relation can be automatically 
checked. Conversely, automatically checking classic specifications (thus, the 
assertion  of  particular  relations)  is  problematic  since  any  non-existence  or 
contextualization of an advocated relation has to be assumed to be a mistake 
whereas this may have been for conceptual reasons: in particular cases, the 
advocated relation was irrelevant or needed to be contextualized.

 Having knowledge providers systematically state (something about) particular 
relations increases or maximizes their entering and, as especially illustrated 
by the fifth paragraph of Section 3, inferences from them.

Genericity wrt. inference engines. For genericity purposes, the previous paragraph 
uses the notion of  contextualization. This does not mean that the approach  requires 
contexts or a second-order logic since in many KBs contexts are not needed or not 
used, or partial (or ad hoc) representations of them are used, e.g. i) exclusion relations 
can replace some uses of the “not” operator or the “necessarily not” of athletic modal 
logic,  and  ii) contexts  in  general  may  for  example  be  expressed  via  the  “Context 
Slices” design pattern [16] or via statement reification (e.g., as in RDF) plus types for 
particular kinds of contexts. Instead of calling an external logic-based inference engine, 
some  implementations  of  connectedness  checking  functions  may  use  simple  graph 
matching techniques – which may take into account partial (or ad hoc) representations 
of contexts – when searching objects and relations that match specifications given via the 
parameters. This is how these checking functions are implemented in WebKB-2 [17], 
thus how the examples were validated and the evaluations performed.  A companion 



Web article [18] also proposes SPARQL+OWL queries as implementations of these 
functions  for  particular  kinds  of  parameters  (e.g.,  those  of  all  the  examples  below 
related to the checking of classes), and these queries have been validated via Corese 
[19], a SPARQL and OWL inference engine. The interface shown in Figure 1 is able to 
call  both  tools. For  genericity  purposes,  the  approach  presented  in  this  article  is 
purposefully  not  related  to  a  particular  logic,  knowledge  representation  language 
(KRL), inference engine or strategy. To that end, this article uses the expression “ the 
used inference engine” (be it internal or external to the function) and the “=>” symbol. 
It refers to the implication operator of the KRL exploited by the used inference engine. 
Although Section 4 gives a second-order logic formula (that uses “=>”), this one can be 
downgraded – e.g., instantiated wrt. each of the types in the KB – to match the used  
KRL. Then, the logical properties of the checking function and approach are derived 
from those of the used “=>” and engine:

 If  the  used  logic  is  “syntactically  or  semantically  valid”  (informally,  both 
cases imply that if the premises of an implication is true, its conclusion cannot 
be false), then the approach is “syntactically or semantically valid”.

 If the formal system composed of the KB and the used logic is “semantically 
complete” (i.e.,  if  all  the tautologies of this system are provable),  then  C* 
gives all  the results  it  should. If  that  system is not  semantically complete, 
some compliant or non-compliant objects may not be retrieved.

 The computational properties of the function depends on i) which operation of 
the inference engine it calls – and how repetitively it is called – to perform the 
above cited search and matching, and ii) the computational properties of this 
operation: they depend on the entailment regime [20] of the engine as well as 
the normalization [21] and complexity  of the exploited KRs (in OWL [14], 
this  relates to the notion of “profile” [22], e.g., OWL-2 EL is a fragment of 
OWL-2  [14] that  has  “polynomial  time reasoning  complexity”;  [22]  gives 
computational properties for each OWL-2 profile). 

 To conclude,  although  the  results  of  the  function  depend  on  the  selected 
inference engine, it can be said that the approach itself is independent of a 
particular inference engine. This kind of genericity is an advantage and, at 
least in  this article, there would be no point in restricting the approach to a 
particular logic.

Comparison  with  constraints. In  a  KB,  constraints  enforce  the  existence  of 
particular relations. Hence, using them is  similar to  using C% and considering that a 
result inferior to 100% is a problem. However, constraint languages – e.g. SHACL [23] 
– generally do not allow the use of contexts in specifications, let alone specifications 
about  “positive  or contextualized relations  of  particular  types”.  If  the  goal  is  to 
compare KBs, using constraints is also not an easy method.

3. Illustrations and Experimental Validations of the Genericity of the Approach

Notation. For concision and  clarity  purposes,  i) the notation used  below is a recent 
extension of FL  [17],  and ii) some parameters are  predefined strings with particular 
meanings for the functions, e.g. "every object to some object". 



“Coverage  of  a class” in the sense used in [24]. In  [24] (unlike in [25]),  the 
“coverage” of a class in a KB is the ratio of i) the number of instances of this class, to 
ii) the number of instances (in the KB). For a class identified by Cl, such a coverage 
could be measured via C%( {every owl:Thing}, {rdf:type -> Cl}, {"every object to 
some object", "no negated or other contextualized relation is counted"} ): due to the 
cardinalities "every object to some object" in the 3rd parameter,  this call  returns 
100% if and only if  every object  of type  owl:Thing (e.g.  a class if  there are meta-
classes) is source of some (i.e., at least one) rdf:type relation to Cl. This relation must 
be positive due to the  "no negated or other contextualized relation is counted". This 
restriction could also be written as [any sub:Statement ––sub:counted-contextualizing-
relation-types––> {}] which  can  be  read:  “any  statement  has  for sub:counted-
contextualizing-relation-types an  empty set”  (thus,  no contextualized  statement  can 
comply with a specification).

Existential  completeness  wrt.  particular  relations:  existence  of  relations  of 
particular types from every selected object to some object. The expression “existential 
completeness” refers to the use of the cardinalities  "every object to some object" in 
the  3rd parameter (as in the previous paragraph) but  also emphasizes that the goal or 
ideal  when using that specification is to have a KB fully complying with it (unlike in 
the  previous  paragraph).  An  an example, C%( {every rdfs:Class}, {rdfs:label, 
rdfs:comment, rdfs:subClassOf}, {"every object to some object",  "no negated or 
other contextualized relation is counted"} ) returns the percentage of classes in the 
checked KB that are source of at least three (asserted or inferable) positive relations (to 
some objects  in  the  KB):  an rdfs:label relation,  an rdfs:comment relation  and  an 
rdfs:subClassOf relation. The “at least three” is because in the used notation “{…}” sets 
are AND-sets (by default, but OR-sets and NOT-sets can also be used; all these kinds of 
sets can also be combined).

Universal  completeness  wrt.  particular  relations  (here,  subclassOf  and 
equivalentClass  relations):  existence  of  relations  of  particular  types  from  every 
member of the set of source objects to every member of the set of destination objects.  
Analogously to  the  previous  example, C%( {every rdfs:Class}, {rdfs:subClassOf}, 
{"every object to every named object", [any sub:Statement  ––sub:counted-
contextualizing-relation-types––> {sub:negation}] } ) returns 100% if every class in 
the KB is  connected (by an asserted relation or one inferable by the used engine) to 
every named object in the KB via positive rdfs:subClassOf relations  or negated  ones 
(due to the last part in the 3rd parameter). A “named” object is one that is identified 
(e.g., a non-anonymous type) or is source of an rdfs:label relation. When the engine 
knows that the  destination objects can only be classes (e.g., via a specification in the 
parameters or since no statement can be a class), the above call returns 100% if every 
pair of (named) classes is connected by a positive or negative rdfs:subClassOf relation. 
Similarly, C%( {every rdfs:Class}, {rdfs:subClassOf, owl:equivalentClass}, {"every 
object to every named object", [any sub:Statement  ––sub:counted-contextualizing-
relation-types––> {sub:negation}] } ) gives the percentage of classes satisfying the 
following condition: between every evaluated pair of classes, there should now be a(n 
asserted or inferable) positive or negative rdfs:subClassOf relation  and a positive or 
negative owl:equivalentClass relation.  Thanks  to  this  last  one,  even  though 
rdfs:subClassOf relations  are  not  strict  (their  type  is not  disjoint  with 
owl:equivalentClass), the use of strict subclassOf relations is actually evaluated. I.e., if 
rdfs:subClassOf relations are used between two classes, there must also be a relation 



indicating whether  these  classes are  equivalent.  This  detects  unintended 
rdfs:subClassOf cycles between classes.

Universal completeness wrt. generalization, equivalence and exclusion relations 
between types. A specification even more useful than the previous one is: C%( {every 
rdfs:Class}, {rdfs:subClassOf, owl:equivalentClass, owl:disjointWith},  {"every 
object to every named object"} ). It returns 100% if every pair of classes is connected 
by  a  relation  for  each  the  three  specified  types  and  this  relation  may  be  positive, 
negative or otherwise contextualized since there is now no restriction on contexts in the 
3rd parameter. A KB complying with such a specification (with any context allowed or, 
as in the previous  paragraph,  only  negations) has at least  two advantages.  First, the 
“closed-world assumption” (i.e., any statement not represented in the KB is assumed to 
be false)  and  the “unique name assumption” (i.e., different identifiers are  assumed to 
refer to different things) do not lead to any more inferences regarding relations of the 
three above cited types: at least for these relations, these assumptions are not needed. 
Second, in such a KB, querying types or their instances based on their exclusions leads 
to interesting results.  Creating such a KB is not cumbersome when i) the inference 
engine can deduce that  the subtypes of a type are disjoint with its  disjoint types and 
then also cannot subtype – nor  be equivalent to – these disjoint types, and ii) whenever 
appropriate, knowledge providers use owl:disjointUnionOf (or else owl:unionOf) objects 
and relations  of  types  such  as sub:sC  (defined  in  Sub  via FL  –  and  also  via 
OWL+SparqlUpdate – as a strict subclassOf relation type such that the source subclass 
is neither exclusive to, subtype nor supertype of any of its siblings). Based on the above 
examples,  universal  completeness –  i.e.,  the  use  of the  "every  to  every"  kinds  of 
cardinalities in the 3rd parameter –  seems more useful than existential completeness. 
Hence, from now on, "every object to every named object" is a default specification in 
the 3rd parameter. Thus, C%( {every sub:Type}, {sub:supertype, sub:equivalent_type, 
sub:disjoint_type} ) generalizes the previous specification to all types.

Universal  completeness  wrt.  implication,  equivalence  and  exclusion  between 
statements. With  “=>!”  (alias, “=>¬”) being  the  type  of  “exclusion  between  two 
statements” derived from “=>”, C%( {every sub:Named_statement}, {=>, <=>, =>!} ) is 
analogue to the previous specification but applies to named statements, i.e., those that  
have  been  reified  and  named. If  a  KB complies  with  that  specification,  all  named 
statements  are  organized  via  positive  or  contextualized  “=>”  relations  (that  are 
manually set or that can be deduced by the inference engine) into (or wrt. objects in) a  
“=>”  hierarchy  where  objects  are  also  connected  by  equivalence  and  exclusion 
relations,  whenever possible.  These relations can be deduced by the used inference 
engine  if the  types  of  the  KB  comply  with  the  last  specification  of  the  previous 
paragraph  and  if the  used  inference  engine  can  fully  exploit  the  content  of  the 
statements (this implies that this content is fully formal, hence not partially represented 
via strings,  and that  the used logic is  decidable).  This hierarchy may be useful  for 
performance  or  explanatory  purposes.  The  specification  may also  be  extended  and 
exploited by the editing protocol of a shared KB for enabling its users to cooperatively 
update it while keeping it free of inconsistencies or redundancies, without restricting 
what the users can enter nor forcing them to agree on terminology or beliefs [18].

Completeness of the destinations of subtype relations: existence of at least one 
“complete set of destinations”. A call to C%( {every rdfs:Class}, {sub:subClass}, {[* → 
1..* complete{…}]} ) returns 100% if every class that has at least one subclass has at 
least  one set of subclasses that is  complete (in the usual sense for such a set: each 



instance of the class is instance of at least one of the subclasses; owl:unionOf relations 
can  be  used  for  representing  such  a  set).  Similarly, C%( {every rdfs:Class}, 
{sub:subClass}, {[* → 1..* partition{…}]} ) returns 100% if every class that has at 
least one subclass has at least one “subclass partition”, i.e. a set of exclusive subclasses 
that is complete (in the same sense as previously; owl:disjointUnionOf relations can 
be used for representing such a set).

Specification of most of the checks made by Oops!. The ontology checking tool 
Oops!  [9] can  semi-automatically  check  33  “common  pitfalls”,  among  which  9 
inconsistency problems and 14 “missing value” problems that can be seen as semantic 
connectedness  specifications.  E.g.,  “P01:  Creating  unconnected  ontology  elements” 
problems can be detected via CN–( {every owl:Thing}, {sub:relation} ) while “P11: 
Missing domain or  range in properties”  problems can be detected via CN–( {every 
rdf:Property},  {rdfs:domain, rdfs:range}  ).  The  inconsistency  problem  “P06: 
Including cycles in a class hierarchy” can be  detected via CN–( {every rdfs:Class}, 
{rdfs:subClassOf, owl:equivalentClass} ).  The missing value problem “P13: Inverse 
relationships not explicitly declared” can be detected via CN–( {every rdf:Property}, 
{owl:inverseOf} ). [26] advocates some checks related to some of OOps!. One way to 
perform  many  of  them  is  to  call CN–( {every  rdfs:Class}, {rdfs:subClassOf, 
owl:equivalentClass} ) and CN–({every rdf:Property}, {rdfs:domain, rdfs:range} ).

Evaluation of a well known foundational ontology. To illustrate one experimental 
implementation and validation of this approach, DOLCE+DnS Ultralite (DUL) [27] – 
one of the most used foundational ontologies and one represented in RDF+OWL – has 
been  checked  via C%( {every rdfs:Class}, {rdfs:subClassOf, owl:equivalentClass, 
owl:disjointWith} ). More precisely, an automatic check was made on an extension of 
this ontology (“DUL 3.32 + D0 1.2”,  from the same author; version of April 14th, 
2019) but it is still  named DUL below. For understandability and analysis purposes, 
[28] gives an FL-based and modularized very slight extension of this ontology. The 
first  result  was  0%:  no  DUL  class  has  a  positive/contextualized  asserted/inferable 
relation to  every class for  each of the above listed types.  Partial reasons for this  are: 
i) DUL uses rdfs:subClassOf instead of a strict subclassOf relation, and  ii) it has few 
owl:disjointWith relations. However, only a few exclusion relations had to be added to 
DUL for the following assumption to be true: no class is equivalent to any other class and 
no class has other potential supertypes, subtypes and exclusions than those explicitly 
represented. Then, for making this explicit – i.e,  for this assumption to be unneeded – the 
rdfs:subClassOf relations were replaced by more precise ones (typically of the above 
cited sub:sC type); this made the modified version of DUL automatically checkable via 
the above cited C% call and then the result was 100%. Given the names and comments 
associated to DUL classes, the relations added for making the above assumption true 
seemed warranted. For DUL, with some weaker assumptions, the maximum result was 
11.9% (more precisely 10/84). The interested readers can find more details in [18]. The 
organization of relation types has been similarly checked via C%( {every rdf:Property}, 
{rdfs:subPropertyOf, owl:equivalentProperty, owl:propertyDisjointWith} ).  The  results 
were also 0% when no assumption was made and 100% (more precisely,  112/112) 
when the above cited one was made. However, to make this assumption true, a lot of 
seemingly warranted  exclusion relations and non-exclusion relations had to be added 
between the types.  Some other  top-level  ontologies  were similarly checked and the 
results were similar. This is not surprising: nowadays, even in foundational ontologies, 
it  is  rare  that  subtype  partitions  or  sets  of  exclusive  subtypes  are  used  whenever 



possible (and, it is even rarer that non-exclusion relations are set for making explicit to 
the  inference  engine  that  some  types  cannot  be related  by  exclusion  relations). 
Nevertheless, as earlier  noted, in the general case, adding such relations is easy and 
support inferences that may prove valuable for some applications (this does not mean 
that, for most current applications, such relations would lead to better results or a better  
performance; this would also be irrelevant for knowledge modelling&sharing purposes).

Comparison to the measure named “coverage” in [25]. In [25], the “coverage of a 
class within a dataset” is with respect to the “properties that belong to the class”. For 
each  of  these  properties  (binary  relations  from  the  class),  this  coverage  is  (very 
informally)  the  ratio  of  i) the  number  of  occurrences  of  this  property  in  (all)  the 
instances of this class, to ii) the product of “the number of properties in this class” and 
“the number of instances of this class (in the evaluated dataset)”. This  coverage was 
designed to return 100% when  all instances  of a class have  all the “properties  that 
belong to the class” (to use the terminology of [25], one more often associated to some 
frame-based KRLs than to more expressive KRLs). To represent and generalize this 
last  expression,  C*  and  its  derived  functions  can  exploit  the  special  variable  (or 
keyword) “$each_applicable_relation” in their 2nd parameter.  This variable specifies 
that “each relation type (declared in the KB or the KBs it imports) which can be used 
(e.g., given its definition or signature) should be used whenever possible, directly or via 
a  subtype”.  E.g.,  for  a  class identified  by  Cl,  a  call  to C%(  {every  Cl}, 
{$each_applicable_relation}, {"every object to some object"} ) would return the 
ratio of i) the number of instances of Cl that have at least one relation of each of the 
possible types, to ii) the number of instances of Cl.  Thus, 100% would be returned 
when all instances of Cl have (at least one instance of each of) all the relations they can 
have. This is not the coverage of [25] but has a similar intent and is compatible with 
expressive KRLs. To compare KBs, [25] advocates the use of the “coherence of a class 
within a dataset”; it is the sum of a weighted average of the coverages of the classes,  
thus not a ratio between comparable quantities and not a particularly intuitive measure. 
With C%, comparing KBs based on similar coverages of their classes could instead be 
done by calling C%( {every rdfs:Class}, {$each_applicable_relation}, {"every object 
to some object"} ) for each KB and then comparing the results.

A simple  user  interface  showing  some  interesting  kinds  of  parameters  for 
semantic connectedness checks. Figure 1 shows a user interface  that i) helps people 
build parameters for some functions like C%, ii) generates a query (or, in some cases, a 
SHACL constraint), and iii) calls a KB server (endpoint) with the query or constraint. 
This  server displays the results of the execution of the query or of the adding of the 
constraint.  For  functions,  this  interface  was  tested  with  WebKB-2  [17];  for 
SPARQL+OWL or SHACL, a local Corese  server [19] was used. Each of the points 
below comments on one menu. These points are only  meant to give  an overview of 
interesting options and general ideas about what can be achieved. The interested readers 
can find more details in [18]. In these menus, the indentations represent specializations. 

 The “Level” menu on the top right corner selects options in the four selection 
menus  about  the  parameters:  those  in  the  middle  of  Figure 1.  This  figure 
shows the selection of the options for the level named “Good (/ Owl+Sub)”. 
OWL-RL or  OWL-QL, along with some Sub relations defined  with  these 
OWL profiles, are  sufficient for  class  definitions to fully  comply  with the 
options of this level and to check this compliance (but this is often not the case 
for relation type definitions, statements and individuals).



 The “From such objects” menu enables the selection of some particular types 
and quantifiers  for  the  1st parameter  of  C*  (thus,  this  menu  is  in  the  1st 

column), hence for the objects in the sources of relations selected to be checked. 
 The “To such objects” menu is about which destination objects may be used 

when exploiting the “to” part of specified cardinalities (e.g. "every ... to ..."). 
Thus, although in Figure 1 this menu had to be placed in the 1st column, it is 
related  to  the  3rd parameter  of  C*. This  menu  is  mainly  only  useful  for 
universal completeness ("every ... to every ..."). With the “accessible objects” 
option, the chains of relations that start from the evaluated source objects are 
followed across KBs. At least in the RDF world, this means dereferencing  the 
URIs of each reached object to find KBs that may specify additional relations 
on this object.  This option can be implemented via the SPARQL of Corese 
[19] but not SPARQL 1.1. With the “in the KB” option, the destination objects 
may only be those in the evaluated KB and the KBs it  imports.  The “last 
added object” option is for checking any object addition to a KB before fully 
accepting this object. This is for example useful when a KB is cooperatively 
built or loaded via sequence of assertions or, more generally, of commands. 

 The  “Via  ...  relations  of  these  types”  menu  shows  types  (of  possibly 
contextualized or deducible relations) that are particularly interesting to check. 
The “sub:” prefix is not displayed. The type “==>” generalizes sub:supertype 
and the type for implications (“=>”) that are also generalizations. The types 
“==>!” and “<==>” are the exclusion and equivalence types related to “==>” such 
that using C%({every owl:Thing}, {==>, <==>, ==>!}) is equivalent to using both 
C%({every sub:Type}, {sub:supertype, sub:equivalent_type, sub:disjoint_type}) 
and C%( {every sub:Statement_for_inferences}, {=>, <=>, =>!} ).  A 
complying KB maximizes inferences wrt. “==>” and “==>!”.  The type “==>-
element” generalizes i) “=>-element”, the type of relations from a statement to a 
non-statement object used in a “clause” (an AND part in a conjunctive normal 
form)  of  what  is  implied  by  this  statement  in  its  KB,  and  ii)  sub:NC-
definition_element, the type of relations from a type to a non-statement object 
(hence a type or an individual) directly or indirectly used in a definition by 
necessary conditions of that type (this relation is transitive, hence the “directly 
or  indirectly  used”).  Section 5  of  [18]  defines  both  “==>-element”  and  the 
related “==>-element_exclusion” in second-order logic as well as in OWL for 
class  definitions  written  in  OWL,  and  shows  how  C%( {every sub:Type}, 
{sub:definition-element, <==>, sub:definition-element_exclusion} ) enables 
the detection of implicit redundancies in a KB.

 Most  of  the  options  shown  in  the  “Other  checked  constraints”  menu  are 
related to the 3rd parameter of C*. Section 2.4.5 of [18] shows how a universal 
completeness  specification with the  “minimal differentia (between any two 
selected  objects)”  option is  a  way  to  define,  extend  and  implement  the 
“Differential Semantics” methodology of [29], itself an extension of the genus 
& differentia design pattern. E.g., [18] shows that it can be implemented via 
CN– and a SPARQL query. Similar options are proposed to obtain  similar 
structures for the organization of  “==>”  relations and  sub:part relations in a 
KB.  Other  options  in  this  menu  are  about  previously  explained  kinds  of 
parameters (e.g., what is above called “cardinalities”).

https://www.w3.org/2001/tag/awwsw/issue57/20110327/#depends


Figure 1. A simple interface for the evaluation of semantic connectedness.

4. More Precise Definitions of C*, CN, CN–, C% and CNΔ

Informal definition of C* with default parameters: “every object to every named object” 
cardinalities with destination objects in the KB; no restriction on the destination objects 
nor on the types of contextualizing relations. With its default parameters, C* checks 
that, in the tested KB, for every selected relation type, there is at least one relation of this 
type – or, more precisely, at least one statement about a relation of this type – from every 
object of the selected set to every (other or not) named object of the KB. In this check, 
“at  least  one  statement  about a  relation” uses  the  previously  introduced  notion  of 
aboutness and means that i) there exists a statement asserting whether the relation exists, 
does not exist, cannot exist or exists under certain conditions, and ii) this statement is 



asserted, or is hard-coded in the inference engine used for the evaluation, or can be inferred 
by this engine without using the closed-world assumption or the unique name assumption 
(since the goal if for knowledge providers to make the necessary information explicit). 

More formal definition of CN for its above listed default values, with a set of  
binary relation types as the 2nd  parameter (this restriction is for clarity purposes; from 
this  definition,  other  ones  without  this  restriction  or  for  other  parameters  can  be 
derived; a (second-order) logic based  notation is here used for clarity and concision 
purposes but, as earlier noted, CN implementations do not need to exploit a second-order 
logic; they can also be fully function based; [18], the companion article, also proposes 
SPARQL+OWL queries for particular cases). With Kb being a KB or portion of KB, and 
NamedObjs being the set of named objects in Kb, for any type OT and any set of binary 
relation  types  that  is  identified  as  RTs,  calling CN({every OT}, RTs, {}) returns the 
number of objects O1 satisfying the next formula and its two associated points.

 Formula 1:   ∀ rt ∈ RTs,O1 ∈ Kb, O2 ∈ NamedObjs  ∃ rto   
  OT(O1)    ∧ rdfs:subPropertyOf(rto,rt)  ∧  
 ( (Kb => rto(O1,O2))     ∨  (Kb => ¬ rto(O1,O2))  ∨ 
   (Kb => (∃c sub:Contextualization(c) ∧ sub:contextualization(rto(O1,O2),c)
              ) ) ).

 As previously justified, “=>” refers to the implication exploited by  the used 
inference engine (Section 2), without feature selection leading to the use of 
the  closed-world  assumption  or  the  unique  name  assumption  (Section  3). 
Since rdfs:subPropertyOf(rt,rt) is  reflexive, rto  may be identical  to rt. 
“¬” (“!”) is the classic negation operator.

 The type sub:Contextualization is the type for all contextualizing conditions or 
values,  e.g.  the  truth  status  sub:False,  while  sub:contextualization is  the 
relation type for  all  binary relations from a statement  to  a contextualizing 
condition or value. It is assumed that, when needed, statements in the KB can 
be – or have been – converted by the used inference engine into statements 
that use  instances  of  those  types.  The  “(Kb =>  ¬ rto(O1,O2))”  part  of 
Formula 1 is only there in case negations have not explicitly been defined as 
contextualizations:  this  part  is  redundant  if  the  KB includes  the  following 
assertion which makes negation a particular meta-statement.
∀ r,x,y   ¬ r(x,y)  <=>  sub:contextualization( r(x,y), sub:False ). 

CN for the “every object to some object” cardinalities. To obtain the counterpart 
of Formula 1 for these other  cardinalities, “∀rt ∈ RTs,O1 ∈ Kb, O2 ∈ NamedObjs” is to 
be replaced (within Formula 1) by “∀ rt ∈ RTs,O1 ∈ KB ∃O2”. By adding “∧(O1!=O2)” 
at the end of the formula, the “every object to some other object” cardinalities are used. 

Definition  of  C% and  CN–. C% divides  the  result  of  CN by  the  number  of 
evaluated objects, i.e. by the number of objects of type OT if the terms and conditions 
for Formula 1 are used.  With these conditions, if Formula 1 is satisfied, C% returns 
100%, while CN– returns the list of objects of type OT  for which Formula 1 is false.

Restrictions on the counted contextualizing relation types. Section 3 illustrated the 
restrictions [any sub:Statement ––sub:counted-contextualizing-relation-types––> {}] and 
[any  sub:Statement  ––sub:counted-contextualizing-relation-types––>  {sub:negation}]. 
Logically speaking, using any of these two constraints means dropping some arguments 
of the “or” expression in Formula 1: for the first constraint, the 2nd and 3rd arguments are 
dropped, i.e., only the argument “(Kb => rto(O1,O2))” remains; for the second constraint, 
only the 3rd argument of the “or” expression is dropped.



Specification of mandatory contextualizing relation types. Using sub:mandatory-
contextualizing-relation-types instead  of  sub:counted-contextualizing-relation-
types, one may specify the types of the contextualizing relations that are mandatory for 
the  checked  relations,  instead  of just  taken  into  account in  the  ways  previously 
described. Logically speaking, with MRTs referring to a set of mandatory binary relation 
types, this means replacing the “or” expression in Formula 1 by “(Kb => (∀ mrt ∈ MRTs 
(∃c sub:Contextualization(c)  mrt(∧  rto(O1,O2), c ) ) ) )”. E.g.,  [any sub:Statement 
––sub:mandatory-contextualizing-relation-types––> {sub:time}] means that each of the 
checked  relations  should  have  temporal  contextualizations.  When  these 
contextualizations are not explicitly represented via a meta-statement – i.e., when they 
are implicit (e.g. hard-coded in the inference engine) or represented in another way – 
these contextualizations should be inferred for the checking to work as expected.

CNΔ (relation usefulness). CN({every sub:Named_statement}, {=>, <=>, =>!}) gives 
the number of named statements related by positive or contextualized relations of the 
three indicated types.  This number may be seen as indicating the number of inferences 
(based on these types) between named statements in the KB. This number can be obtained 
right before and right after a relation is added to the KB – added explicitly, not  inferred. 
Then, CNΔ – the difference between the two obtained numbers – is the number of 
additional inferences (of the cited kinds) that this added relation has led to.

5. Conclusion

Technical highlights. The intrinsic ontology completeness notions and, more generally 
the semantic connectedness notions, are the product of many sub-notions. This article 
showed i) some important sub-notions (Figure 1 is a synthesis and the beginning of a 
categorization), ii) that only few functions are needed for specifying and checking this 
product, and iii) that the approach it proposes also enables the automatic checking and 
generalization  of  some  ODRs  and related  “KB  quality  measures”.  The  provided 
examples and evaluation introduced some original and useful specifications which are 
rarely complied  with (even by foundational  ontologies)  even though they would be 
easy  to  comply  with.  This  article  also  showed  that,  in  other  research  works, 
KB evaluation measures that can be categorized as semantic connectedness measures 
have far less parameters and do not exploit aboutness. Thus, they do not answer the 
research questions of this article. The metrics used by many of such measures are not 
simple ratios between comparable quantities (quantities of same nature): the proposed 
approach can use these metrics (via the 4th parameter of C*) or, as illustrated in Section 3 
(Comparison to the measure named “coverage” in [25]), may provide alternatives.

Next steps. The companion article [18] shows the beginning of an ontology of 
criteria and relation types used in ODRs and KB quality measures. This ontology will 
be completed and exploited by the code and user interface made for implementing and 
validating the approach  introduced in this article. This approach will  be exploited to 
generalize the KB editing protocol of the KB sharing server WebKB-2 [17] and enable 
its  users  to  adapt  it.  This  approach  will  also  be  applied  for  checking  relations 
automatically extracted from structural dependencies within software code (programs, 
library of software components, etc.), e.g. for checking the universal completeness of 
various  types  of  partOf  and  generalization  relations  between  software  objects 
(functions, structures, variables, etc.).
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