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Abstract.  Via a comparison of the currently used language-based components
for knowledge sharing, this article first highlights the difficulties caused by the
inexistence – and hence absence of exploitation – of a shared core ontology  of
knowledge  representation  languages  (KRLs),  i.e.,  i)  an  ontology  of  KRL
abstract  models  which  represents,  aligns  and  extends  standards,  and  ii)  an
ontology  of  KRL notations.  For  programmers,  these  are  the  difficulties  of
importing, exporting or translating between KRLs; for end-users, the difficulties
of adapting,  extending or mixing notations.  This article then shows how we
have built this shared core ontology plus a tool for exploiting it. We use them
for specifying, parsing and translating KRLs, thus allowing their use without
additional programming. This ontology can be represented in any KRL that has
at least  OWL-2 expressiveness.  Thus, the results can easily be replicated. A
Web address for the tool and the full specifications is given.

Keywords:  Language  ontology,  Meta-modelling,  Syntactic  translation,
Knowledge representation languages, General knowledge sharing.

1   Introduction

The term "knowledge representation language" (KRL) may refer (at least) to one of the
next notions or their combination:  i)  a semantic model, i.e., a set of types (alias, an
ontology)  specifying  semantic  and/or  logical  notions,  e.g.,  those  of  the  SHOIN(D)
description logic,  ii) an abstract "data type" (ADT) model, i.e., an ontology for ADTs
such as abstract syntax trees or abstract semantic graphs (e.g., most types in the OWL-
DL ontology form an ADT model since they permit to store a graph that only contains
binary relations  and follows a semantic  model  for  SHOIN(D)),  and  iii)  a  concrete
model, i.e., a textual/graphical/... KRL notation, e.g., Turtle and OWL-Functional-Style.
Knowledge sharing (KS) involves  many tasks,  some of  which are  notation related:
knowledge editing, parsing, importing, exporting, translating, etc. Section 2 compares
"approaches  implementing  these  tasks"  depending  on  the  language  they  offer  for
specifying the ADT model: i) a notation grammar, e.g., EBNF, ii) a generic language for
creating ADTs, e.g., XML and MOF-HUTN, and iii) an ADT ontology. 



The first approach implies creating a concrete grammar with actions associated to its
rules, and giving it to a parser generator, e.g., Lex&Yacc. The actions contain functions
or rules to build a less syntax-oriented ADT and build a semantic model (directly or not:
a parser/translator exploiting rules and a grammar for the semantic model may be used).
Even though an "interactive programming environment" generator (e.g., Centaur) may
provide parsers, editors, checkers and interpreters or compilers for specified languages,
creating these specifications involves – or is akin to – programming. These specifications
(grammars and building/translation rules or functions) are difficult to compare, extend and
re-use:  they  cannot  be  organized by  specialization  relations.  Small  changes  in  the
concrete/ADT/semantic models often lead to important changes in the specifications.
Translations rules or procedures have to be specified for each pair of languages.

With the second approach,  specifying an ADT grammar (e.g.,  an XML schema)
permits to use a concrete parser or editor and specify various presentations (e.g., via
CSS and XSLT). However, since the concrete descriptions must then have an explicit
structure, they are too bulky to be used  directly for building or displaying (parts of)
programs or knowledge bases, especially with standards in this approach (e.g., XML).
Thus, more adapted textual/graphic KRL notations are required and parsers for them are
still needed. Furthermore, since these languages are not based on logic, the tools based on
them cannot perform logical inferences, hence cannot exploit knowledge representations. 

With the third approach – i.e., the use of ontologies on notations, ADTs and semantic
elements  instead  of  just  grammars  on  them –  the  difficulties  of  the  previous  two
approaches can be reduced. So far however, i) there were no ontologies for notations,
and ii) the ontologies on KRL abstract models (ADTs and/or semantics) were implicit
(i.e., informally or insufficiently described) or about  KRLs of insufficient expressiveness
for representing many other KRLs (hence for general  knowledge representation and
sharing). Thus, these last ontologies were also not inter-related. This article shows how
i) we created a core for an "ontology of KRL ontologies" by representing, aligning and
extending  the major "KRL abstract models", and then extending it with a KRL concrete
model ontology, and ii) we have begun to use/extend it for building an organized library
of  declarative  concise  "KRL  specifications".  This  "ontology  of  KRL  ontologies"
supports – and also specifies (i.e., provides the declarative code for) – a generic tool for
parsing and exporting KRLs, hence also performing (many) translations between them.
Since programming is avoided and since KRLs or KRL modifications can be specified
in a concise way, even the end-users of applications using such a tool can adapt the
format of input and output KRLs to their needs or preferences. This ontology, as well as
a Web server interface to use this tool, are available from http://www.webkb.org/KRLs/.

Section 3 introduces the notation used in this article for the illustrations. 
Section 4 shows some relations between top-level "language elements" and more

general  general concepts, as well as between notation models and abstract models.
Section  5  explains  the  main  primitive  concepts  and  relations  which  permit  to

represent and relate the various models in a uniform and concise way.
Section 6 illustrates their use for the general "abstract model" parts of our ontology.
Section 7 illustrates their use for specifying particular KRLs and even grammars.

Representing grammars shows the generality of  the approach  and permits to re-use
existing parser generators. However, our tool currently only uses the LALR(1) parser
generator "Gold"; thus, it cannot parse KRLs requiring a more expressive grammar.



2   Comparison of the various language-based approaches for KS

The model-related terminology used in this article is compatible with the terminology
used in syntax or semantic related works. To be compatible with the terminology used in
Model Driven Engineering (MDE) related works, especially the one related to MOF
(the Meta-Object Facility of the OMG: Object Management Group), the prefix "meta-"
would need to be systematically added before "model"since in MDE a document or
code is a "model" and it follows the specifications of a "meta-model", e.g., an XML
schema. For clarity purposes,   in this article,  a "meta-model" –  i.e.,  a language to
specify a language – refers to what is called a "meta-meta-model" in MDE.

The introduction noted that a model may be an "abstract model" (e.g., OWL-DL or
an XML schema;  its  specifies  abstract  structures of  a  certain  type)  or a  "concrete
model" (e.g., a formal grammar or a CSS script; it  specifies concrete structures of a
certain type). A concrete model, alias a presentation model, specifies either a formal
presentation (it is then a notation) or an informal one (e.g., that certain kinds of ADT
elements should be presented with bold characters). CSS and EBNF are therefore meta-
models for concrete models. MOF is a meta-model for – and a subset of – the UML
model. Since UML also refers to a notation, it is both an abstract and concrete model.
Even graphical notations implicitly or explicitly follow a grammar [1]. XML is a meta-
model for certain ADT models and concrete models. Meta-models are also models.

This terminology permits to compare language-based approaches based on the kind
of meta-model they exploit: a notation-dependent one, a structure-dependent one and a
logic-based one. In each case, the next subsections show that problems comes from a
lack of  expressiveness  of  the  meta-model:  there  are  some notions that  it  allows to
declare (in a model) but not to  define. Thus, tools based on this meta-model cannot
exploit the semantics of these notions. Other tools that know this semantics are needed
for exploiting it. Furthermore, these notions are represented in different and ad-hoc or
implicit ways across models, thus making knowledge sharing and re-use more difficult.
As can be concluded at the end of the next subsections, the use of an ontology of KRL
ontologies, based on higher-order logics, is necessary to avoid problems.

2.1   Exploiting Notation-dependent Meta-models

The grammar directed parsing of a  textual/graphical  description leads to a concrete
structure –  e.g.,  a concrete syntax tree if a context-free concrete grammar is used – and
an ADT – e.g., an "abstract syntax tree" or an "abstract semantic graph".  To derive the
abstract structure from the concrete one, an "action" – containing a transformation rule
or function – is generally associated to all or most concrete grammar rules. Then, static
semantic checking (type checking, context-dependent interactions), dynamic semantic
checking (interpretation, debugging) and "un-parsing" (pretty-printing of the abstract
structures, translation to other notations) can be performed or their code/specifications
can be generated. E.g., in the generic "interactive programming environment"generator
Centaur [2] – which may generate a parser, a structured editor, a type checker and an
interpreter or a compiler for a formal language – the concrete and abstract grammars
and building rules can be specified in the Metal formalism (which is then for example
transformed  into  a  format  on  which  Yacc  is  called),  while  the  semantic  related



specifications are in Typol which is then transformed and executed via Prolog, Lisp and,
via the Minotaur system [3], attribute grammars. Centaur has been used for numerous
programming languages and one KRL [4].  

Tools such as Centaur ease the task of writing parsers, translators, etc. They can be
seen as programming focused MDE tools. They could be extended to use ontologies or
MOF and XML models. If such a tool allowed the re-use of an ontology of abstract and
concrete models (such as the one we propose for KRLs), the various specifications that
must be provided by people for each language would be much lighter, comparable and
re-usable since the ontology permits to share and categorize them. This is much harder
otherwise, even with KRLs such as Prolog which are oriented toward execution rather
than modelling.  Our  KRL ontology includes  sufficient  information to  allow people
– programmers as well as application end-users – to specify the peculiarities of their
notations for them to be usable as input or output KRLs: programers or users do not
need  to  specify  conversions  (except  for  complex  ones  between  abstract  elements
referring to elements of different logics) since they can be automatically derived.

To avoid the use of multiple structures or models, and thus also allow languages to
be directly extended, other (and often earlier) avenues have been proposed. They all
imply that extensions can be defined with the language and that it embeds a parser (e.g.,
via an "eval" function). This is eased when the language is homo-iconic, i.e., when its
abstract structure can be directly derived from the text (because they have hom same
structure). In other words, this is eased when new functions or rules can be built like
other data structures and then evaluated, as in Lisp and Prolog.  Lithe [5] is a class-
based programming language looking like an EBNF grammar with semantic actions
containing  C-like  code;  the  classes  are  the  non-terminal  alphabet  of  the  grammar.
Similarly, XBNF [6] is an extension of EBNF that is a KRL since it permits to define
some functions, logical relations and sets on each class of objects defined by a rule.
However, in all these other avenues, extensions to the language are restricted by its core
concrete and abstract models. In other words, these extensions do not allow to represent
and follow other models than the predefined ones. Yet, they show that using a unique
language to represent abstract and concrete specifications has advantages (concision, ...).
A very expressive modelling-oriented KRL has those advantages without the restrictions
since it can represent different models (because of it expressiveness, the defined models
are just specializations of the core models). It also permits to categorize their elements.

2.2   Exploiting Structure-dependent Meta-models

As explained in the introduction and the previous sub-section, using EBNF and other
"languages to write concrete grammars" them implies programming-like tasks to build
the abstract structures (ADT and semantic ones) from the concrete ones. The building of
the ADT structure can be avoided when homo-iconic ADT meta-models are used, e.g.,
XML, MOF-HUTN (the Human Usable Textual Notation for MOF) or XMI (the XML-
based  notation  for  MOF models).  However,  the  concrete  descriptions  are  then  not
enough concise and high-level or user-friendly [7] to be used directly for developing or
displaying (parts of) programs or KBs. Indeed, i) these descriptions have a very explicit
structure, and ii) current meta-models – and hence their notations – declare and allow
the use of few structural notions (e.g., the notion of object, attribute and – in MOF –



association/relation),  not  logical  notions  (quantifier,  meta-statement,  etc.)  nor
programming notions (parallelism, succession, class inheritance, parameter evaluation,
etc.). Although such "structural meta-models" permit to declare these additional notions
in models, they do not permit to define their semantics. In other words, the tools which
exploits structural meta-models (e.g., the XML parser and CSS pretty-printer) can only
understand the meaning –- and hence exploit – the structural elements.  This is why,
since  1999,  for  the  Semantic  Web  and,  more  generally,  for  knowledge  sharing  and
exploitation purposes, the W3C advocates the use of RDF instead of XML as meta-
model. Indeed, XML is a tree-based structural meta-model while RDF is a graph-based
meta-model  which  follows  a  simple  logic  and  can  be  extended  with  language
ontologies, e.g., those of OWL. However, like KRL models represented with a structural
meta-model,  extensions  by  language  ontologies  are  just  declarations of  KRL
components (not  definitions): inference engines must handle them in special ways to
take into account their semantics. The OMG followed this approach by proposing ODM
(Ontology Definition Metamodel) which, in its version 1.1 [8], declares the elements of
four KRL models in MOF (with a few relations between them) – RDF, OWL, Common
Logic and Topic Maps – with a UML profile for the first two. No integrated ontology is
provided.  To  conclude,  since  XML and  MOF-HUTN  cannot  be  used  directly (as
notations and ways to define semantics) for knowledge sharing or programming, tools
supporting those tasks include parsers and semantic-handling modules in addition to –
or replacement for – XML and MOF related tools.

Some MDE tools are described  as  having extensible  input  notations,  e.g.,  BAM
[BAM] in process modelling. Actually, they handle an expressive meta-model which
includes the primitives for various (already existing) process modelling languages and
thus can handle each of them. The authors of these tools also count textual annotations
– both formal and informal ones – as a way to extend existing graphical notations.

2.3   Exploiting a Logic-based Meta-model

As above noted RDF is an ADT meta-model following a simple logic. Its structures can
be presented with concrete models specific to RDF (e.g., RDF/XML: RDF linearized
with XML) or not (e.g., Turtle). These structures can be used for storing ADTs with
more semantics (e.g., SPIN structures are RDF representations of the SPARQL query
language). The generic parser and translator specified in this article also works for RDF.
No generic parser just for RDF or another model seems to have been undertaken. On the
other  hand,  there  have  been  several  works  on  style-sheet  based  transformation
languages and ontologies for specifying how RDF abstract structures can be presented,
e.g., in a certain order, in bold, in a pop-up window, etc.: Xenon [10], Fresnel [11],
OWL-PL [12] and SPARQL Template [13].  Since these tools do not use a notation
ontology, they require a new template or style-sheet for each target notation.

KRLs of  low expressiveness  ensure  good properties  for  knowledge exploitation,
typically speed and completeness. This is why KRL models of the OWL family have
different  degrees  of  expressiveness,  all  inferior  to  First  Order  Logic  (FOL).  For
knowledge modeling and sharing purposes,  the more expressive the used KRLs the
better.  Indeed, more expressiveness permit more definitions (instead of declarations)
and thus permit to set more relations between different notions (logic ones, programming



ones, ...) from one or various sources. In other words, a more expressive KRL permits to
represent knowledge in more precise (or less biased and ad-hoc) ways and in more
generic, high-level, normalized and concise ways, hence in easier to develop and re-use
ways. This is clear with the representation of cardinalities (or, more generally, numerical
quantifiers;  e.g.,  see  the  part  in  italic  bold  in  Table  1),  meta-statements  and  set
interpretations.  Thus,  for  knowledge modeling and sharing  purposes  – and  also,  as
explained  below,  for  knowledge  exploitation  purposes  –  a  meta-model  needs  to
represent "higher-order logic" (HOL).  RIF-FLD [14], the W3C "Framework for Logic
Dialects", is based on HOL. To ease its re-use, in our KRL ontology we represented the
the  RIF-FLD  elements  and  organized  them  via  subtype  and  exclusion  links  (this
organization was left implicit by the W3C, only a grammar and informal descriptions
were provided). KIF (Knowledge Interchange Format) [15] is a KRL – with a FOL
model  but  a  HOL notation  –  which  reached  its  purpose:  being  a  de-facto  KRL
interlingua by allowing KRL authors to define elements of their KRLs in KIF and thus
ease the translations of these KRLs into KIF. 

A HOL model does not necessarily require a HOL inference engine to be handled.
One reason is that, interpreted with Henkin semantics, it is equivalent to (many-sorted)
FOL. This is how KIF has a HOL notation and a FOL model. Another reason is that
conversions to less-expressive models (via losses of information) can be performed for
applications,  depending  on their  needs.  E.g.,  a  knowledge-retrieval  application  gain
speed and does not loose much precision and completeness by ignoring meta-statements
(modalities, ...) as long as results are displayed with their associated meta-statements.
Since HOL does not restrict possible exploitations – as opposed to knowledge modelled
with KRLs of lower expressiveness – it is good for knowledge exploitation purposes too.

For business-to-business KS where the used structural/logic meta-models are well-
known and sufficient for both businesses, KRLs of reduced expressiveness may be used
and tailored knowledge conversion  procedures  may then be developed.  For general
knowledge sharing and re-use, or for making business-to-business KS more efficient,
knowledge representation  should not  be restricted  and,  to  allow the use  of  various
KRLs, a generic parser-translator for KRLs is needed. This requires a shared ontology
of KRLs (abstract models and notations) and, more generally, of general concepts. The
Ontolingua server [16] was a first step in that direction. It proposed a structured library
of interconnected fundamental ontologies, some of which formalized concepts related to
KRL models, especially frame-based ones, i.e., concepts similar to those of OWL. It
also hosted ontologies of its users in a structured library. However, this server did not
have protocols to detect and help avoiding implicit redundancies between the ontologies
and hence encouraging numerous relations between the various represented concepts. In
other words, the various ontologies did not form an integrated one. The WebKB server
[17] provides protocols solving this problem within a KB and between different servers,
without restrictions on the content or on the used KRLs, nor forcing the users to agree
on terminology or beliefs. The ontology proposed in this article is hosted by a WebKB
server and thus can be extended by Web users. 

This ontology integrates the main standards for KRL models: RDF+OWL+RIF-FLD
from the W3C, Common Logic [18] (a subset of the KIF model) from ISO/IEC and the
"Semantics of Business Vocabulary and Business Rules" (SBVR [19]) from the OMG.
These standards have similar or complementary components which, previously, were not
semantically related. Another originality is that our  ontology includes a notation ontology.



3   Notation and Conventions Used in this Article for Illustrations

To allow the display and understanding of its numerous required illustrations, this article
needs a concise and intuitive notation for KRL models of OWL-2 like expressiveness.
To that end, this article uses the FL notation [20] (it does not advocate the generalized
use of FL since it proposes a way for people to use any notation they wish). Indeed,
graphical notations are not concise enough and common notations such as those of the
W3C are not sufficiently concise and "structured" enough. Here, "structured" means that
all direct or indirect relations from an object can be (re-)presented into a unique tree-like
statement so that the various inter-relations can readily be seen. Table 1 illustrates this
by representing the same statement – or set of statements – in English and then in six
formal notations: FE (Formalized-English [21]: it looks like English but it is actually
very similar to FL), FL, UML, Turtle (or Notation3),  OWL Manchester notation and
OWL Functional-style. This last notation is "positional relation" based. The first five are
graph-based notations: they are composed of concept nodes and relation nodes.

The above textual graph-based notations are frame-based. A frame is a statement
composed of a first "object" (alias "node": individual or type, quantified or not) and
several links associated to it (links from/to other objects). In this article, "link" refers to
an  instance  of  a  "binary  relation  type".  In  OWL,  such  a  type  is  instance  of
"owl:Property" ("owl#Property" in FL: the namespace identifier is before the "#"). What
is not an individual is a type: relation type or concept type (an instance of owl#Class). 

In this article, the default namespace is for the types we introduce via our ontology.
Each name for a concept type or individual is a nominal expression beginning by an
uppercase letter. The name of a relation type we introduce begins by "r_" (or "rc_" if
this is a type of link with destination a concrete term). Thus, names not following these
conventions  and  not  prefixed  by  a  namespace  are  KRL keywords.  Within nominal
expressions, '_' and '-" are used for separating words. When both are used, '-' connects
words that are more closely associated.  Since nominal expressions are used for the
introduced types, the common convention for reading links in graph-based KRLs can be
used, i.e., links of the form "X  R: Y" can be read "X has for R Y".  If "of" is used for
reversing the direction of a link, the form "X  R of: Y" can be read "X is the R of Y".
The  syntactic  sugar  of  FE  makes  this  reading  convention  explicit.  Following  this
convention  reduces  the  use  of  verbs  and  adjectives  (which  are  more  difficult  to
categorize and awkward to use with quantifiers) and thus normalizes knowledge. 

  In FL, if a link is not a subtype link nor another "link from a type", its first node is
quantified and its  default  quantifier  is  "any".  This  one is  the "forall"  quantifier  for
definitions (in other words, the type in the first node is defined by this link). FL allows
different links with the same first node to quantify this node differently. Indeed, in FL,
the  quantifiers  of  the  source  node and  destination  node of  each  link  may also  be
specified in its relation node or in its destination node. This original feature permits FL
to gather any number of statements into one visually connected graph. However, in this
article, the quantifier for the first node is always "any" and left  implicit. A destination
node can also be source of links if they are delimited by parenthesis. 

Given these explanations, the content of the  tables in this article can now be read.
Every  keyword  not  introduced  above  will  be  explained  via  a  comment  near  it.
Comments use the C++ and Java syntax.  In these tables, bold and italic characters are
only for highlighting some important types and for readability purposes.



Table 1.  The same statement – or set of statements – in English and six different KRL notations:
FE, FL, UML, Turtle, OWL Manchester, OWL Functional-Style. In all other tables, FL is used.

The type Language_or_Language-element is defined by its subtype partition composed of
Language_element and Language. Any instance of Language has for (r_)part at least 2 instances
of Language_element. This last type has for subtypes (at least) KRL and Grammar.

/* In FE: */  Language_or_Language-element has for partition {Language, Language_element}.
Language has for r_part at least 2 Language_element.
Language has for subtype KRL and has for subtype Grammar.

Language_or_Language-element      //Notes: in FL, ">" is an abbreviation for the "subtype" link
  = exclusion                                       //  as in some other notations).  "<" is its inverse.  
     {  (Language                                 //  "exclusion{...}" specifies a union of disjoint types : 
            r_part:  2..* Language_element,  //  a real "subtype partition" of T if "T = exclusion{...}",
             >    KRL    Grammar  )               //   an "incomplete partition" if "T > exclusion{...}".
         Language_element      // A "," separates 2  links of different types. For consecutive links of
     };                                      //  the same type, this type needs not  be repeated and there is no ",".

      Language_or_Language-element                     //In this UML representation, no box is drawn
                        ^                                                       //  since no attribute or method needs to be
                                      {disjoint, complete}          //  represented.   
                                                                                 

Language    r_part       2..*    Language-element     // Here, an association/relation of type  r_part
 ^          ^                                                                    //  is used instead of the special arrows used
                                                                                   //  in UML for aggregations or compositions
KRL    Grammar                                                        

:Language_or_Language-element     //Turtle + OWL (which is a low-level KRL model, e.g., the
    owl:equivalentClass   [ rdf:type  owl:Class;          // part in italic bold below translates "2..*")
                                          owl:unionOf (:Language :Language_element)  ].
[ ] rdf:type  owl:AllDisjointClasses;   owl:members  ( :Language  :Language_element ).
Language  rdfs:subClassOf  [a owl:Restriction;  owl:onProperty  : r_part;
                                                      owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger;
                                                      owl:onClass  Language_element ].
KRL  rdfs:subClassOf  :Language.              Grammar   rdfs:subClassOf  :Language.
/* Here is a translation in  "RDF/XML with OWL" of the 3rd line in this Turtle example:
    <owl:AllDisjointClasses><owl:members rdf:parseType="Collection">
        <owl:Class rdf:about="Language"/>
        <owl:Class rdf:about="Language-element"/></owl:members></owl:AllDisjointClasses> */

Class:  Language_or_Language-element   EquivalentTo:  Language  or  Language-element
DisjointClasses:  Language, Language-element                                               //OWL Manchester
Class: Language EquivalentTo:  r_part  min 2 Language_element                
Class: KRL  SubClassOf:  Language                      Class: Grammar  SubClassOf:  Language

EquivalentClasses( :Language_or_Language-element                            //OWL Functional-Style
                                 ObjectUnionOf( :Language  Language-element)  )
DisjointClasses(: Language :Language_element)
EquivalentClasses( :Language   ObjectMinCardinality (2 :r_part  :Language_element) )
SubClassOf (:KRL  : Language)                             SubClassOf (:Grammar  : Language)

 



4   Situating Top-level Language Elements in a Top-level Ontology

Table 2 shows how types for KRL models and notations can be organized and inter-
related. E.g., RIF-FLD includes RIF-BLD, both are part of the RIF family of models,
and both have a Presentation Syntax ("PS") and an XML linearization.

Table 3 relates Language_element and some of its direct subtypes to important top-
level types, thus adding precisions to these subtypes. Such a specification is missing in
RIF-FLD but is well detailed in SBVR. This is why Table 3 includes many top-level
SBVR types, although indirectly: the types with names in italics are still types that we
introduce but they  have the same names as types in SBVR and are equal to them or
slight generalizations of them. This approach is for readability reasons and flexibility: if
the SBVR authors disagree with our interpretation of their types, only some links to
SBVR types will have to be changed, not our ontology. As illustrated by Table 3, to
complement and organize types from other ontologies, ours includes many new types.

Table 2.   Examples of relations between KRLs.

KRL   r_part: 1..* Language_element,     > exclusion { KRL_notation  KRL_model },
            r_grammar_head_element_type:  Grouped_phrases;

KRL_notation > (S-expression_based_notation  >  LISP_based_KIF)
                             (Function-like_based_notation  >  (RIF_PS  >  RIF-FLD_PS   RIF-BLD_PS) )
                             (Graph-based_notation > (Markup_language_based_notation
                                                                              > (XML_based_notation 
                                                                                    >  (RIF_XML  > RIF-FLD_XML) )
                                                                        (Frame_based_notation  >  FL   JSON-LD  Turtle) )  );

KRL_model   //KRL abstract model (for an ADT and/or a logic)
 > (First-order-logic_with_sets_and_meta-statements
        > (KIF_model   r_model_type of:  LISP-based_KIF),   r_part: 1..* First-order-logic )
    (First-order-logic > (CL  r_model_type of: CLIF) )
    (RIF > (RIF-FLD  r_model_type of: RIF-FLD_PS,    r_part: RIF-BLD )
                (RIF-BLD  r_model_type of: RIF-FLD_PS) )
    (Graph-based_model  
        > (JSON-LD_model  r_model_type of: JSON-LD)
           (RDF   r_part: 1..* JSON-LD_model,     r_model_type of: JSON-LD  RDF/XML),
           (Frame_model_with_closed_world_assumption  > F-Logic_classic_model )
           (Frame_model_with_open_world_assumption 
               > (Description_logic_model 
                      > (OWL_model
                            > (OWL-1_model  >  OWL-Lite     OWL-DL      OWL-1-Full)
                               (OWL-2_model  >  OWL-2_EL   OWL-2-RL   OWL-2-Full),
                            r_part: 1..* (OWL-1-Full   r_part:  1..* RDFS    1..* RDF    1..* OWL-DL )
                                        1..* (OWL-2-Full   r_part:  1..* OWL-2_EL     1..* OWL-2_RL ) ) ) ) );

In RIF-FLD, depending on the context, the word "term" has different meanings. In
our  ontology,  Gterm generalizes  all  these  meanings  of  "term":  it  is  identical  to
Language_element  and  sbvr#Expression.  In  RIF-FLD,  an  "individual  term"  is  an
abstract  term  that  is  not  a  Phrase  (see  Table  3),  although  it  may  refer  to  one.



Individual_gTerm – or, simply "Iterm" – generalizes this notion to concrete terms too.
This distinction was very useful to organize types of language elements, especially those
from the implicit ontology of RIF-FLD (this framework uses different vocabulary lists,
including one for signatures;  in our ontology, all these terms are inter-related). Used in
this context,  the informal word "individual" is not equivalent to "something that is not a
type". Indeed, since an Iterm may refer to a Phrase, an Iterm identifier may be a Phrase
identifier. Thus, Table 3 uses the construct "near_exclusion" instead of "exclusion". This
construct has no formal  meaning (it does not set exclusion links). It is only useful for
readability purposes. Table 3 also uses it to group and distinguish types for abstract and
concrete terms. Indeed, a (character) string may be seen by some persons as being both
abstract and concrete. Our ontology is – and must be – compatible with many visions,
when this can be achieved  without information loss.

Table 3.   Situating Language_element w.r.t. other types (note: names in italics come from SBVR).

Thing  = owl#Thing,    r_identifier: 0..* Individual_gTerm,
 = exclusion
    { (Situation   =  exclusion {State  Process},     r_description: 0..* Phrase )
       (Entity   //thing that can be involved in a situation
          > exclusion
             { Spatial_entity   //e.g., Square, Physical_Entity
                (Non-spatial_entity   //e.g., Justice, Attribute, ...
                   > (Description_content  = Meaning,
                         > Proposition   Question
                            (Concept >  Noun_concept /*e.g., types */   (Verb_concept = Fact_type) ) )
                      (Description_container   >  (File  >  RDF_file) )
                      (Description_instrument
                          > (Language_or_Language-element
                                 = exclusion { (Language  >  KRL   Grammar,
                                                                            r_part: 1..* Language_element ) 
                                                        Language_element    //see below
                                                     } ) ) )
            }  )  };

Language_element  =  Gterm   Expression,    r_representation of: 1 Meaning,
  > near_exclusion     //String is both abstract and concrete
     { (Representation > Statement,   rc_type: Concrete_term )
        (Concrete_term > (Expression > Text)  (Concrete_iTerm < Iterm) )  //see tables 10 and 11
     }                                                                                                                 // (for some subtypes)
     near_exclusion  //a reference to a phrase is an Iterm 
     { (Phrase > Statement  Definition  Frame)  //+ see Table 6
        (Individual_gTerm  = Iterm,  > Place_holder,   r_identifier  of: 1 Thing)  //see tables 10-11
     }
     near_exclusion { Positional_gTerm   Frame   Gterm_with_named_arguments  }
     near_exclusion  //subtyping these types is KRL dependent 
     { Non-referable_gTerm  //e.g., a predefined term
        (Referable_gTerm  //via constant/variable/function/phrase       //referable→linkable
            r_variable: 0..* Variable,     r_result of: 1..* Function,   r_annotation: 0..* Annotation,
            >  (Gterm_that_cannot_be_annotated_without_link    r_annotation: 0 Annotation )
                 Termula )  };



5   Ontology of a Core Meta-model for KRL Languages

RIF-FLD distinguishes three types of generic structures for a Gterm that is a function or
a phrase. We dropped their RIF-related restrictions and named them Positional_gTerm,
Gterm_with_named_arguments and Frame. Table 1 gave examples for positional and
frame terms. A term with named arguments is similar to a frame except that, as in
object-oriented languages, local attribute names are used instead of link types (types are
global). It could be argued that a same term could be presented in any of these three
forms and hence that these three distinctions should rather be syntactic. However, the
authors of RIF-FLD have not formalized the equivalence or correspondence between
i) "classes and properties" (or frames "interpreted as sets and binary relations") and
ii) "unary  and  binary  predicates",  in  order  to  have a  "uniform syntax  for  the  RIF
component of both RIF-OWL 2 DL and  RIF-RDF/OWL 2 Full  combinations" [22].
According to this viewpoint,  each person re-using ontologies must decide if, for its
applications, stating such an equivalence is interesting or not.  RIF rules or a macro
language such  as  OPPL can  certainly be used for  such structural  translations [23].
However, to avoid imposing this exercise to most users of our KRL ontology, and to
avoid limiting its use for specifying KRLs, it formalizes relations between a frame and a
Conjunction_of_links_from_a_same_source (this is done in the last 17 lines of Table 9;
reminder: a link is – or can also be seen as – a binary relation). 

We found that a small number of link types are sufficient for defining a structure for
abstract terms and specifying their related concrete terms. Table 4 lists and explains the
main link types. They can be seen as a representation and  extension of the signature
system of RIF-FLD.  The ideas are that  1) every composite term can be decomposed into
a (possibly implicit) operator (e.g., a predicate, a quantifier, a connective, a collection
type) and a list of parameters (alias, "parts"), and 2) many non-binary relations can be
specified as links to a collection of terms.  Table 6 and the subsequent tables use the link
types of Table 4 and Table 5 directly or via functions which are shortcuts for specifying
such links. This is highlighted via bold characters in those tables. The end of Table 4
specifies one of these functions (f_link_type).  In the tables 6 to 11, which illustrate the
organization of subtypes of Phrase and Iterm, f_link_type is used to define some abstract
terms as links and hence enables to store them or present them as such when necessary.
To  illustrate  the  way  these  ADTs  are  instantiated  by  knowledge  representations,
Table 12 shows a phrase in different notations and then a part of its abstract structure.

Some links are used for both abstract and concrete terms. E.g., rc_operator_name is
often also associated to an abstract term for specifying a default name for its operator.  If
no such link is specified or if the empty string ("") is given as destination, the operator
type name (without its namespace identifier) is used as default operator name. 

Table  5  lists  major  kinds  of  structured  concrete  terms  and  thus  also  the  main
presentation possibilities  for  structured  abstract  terms (see  the 14 names in  italics).
Based on the five main categories for these concrete terms (see the names in bold and
not in italics), it is easy to find the five categories of abstract terms they correspond to,
even though such links are not shown in Table 5. We found that each of these concrete
term types can be defined with only a few types of links, those that begin by "rc_" and
that were listed in Table 4.  We defined some functions to provide shortcuts for setting
those links when defining a particular concrete term, e.g., fc_prefix-fct-like_type (its use
is illustrated by Table 13 for the definition of RIF-PS and JSON-LD). 



In our ontologies, links from a type do not specify that the given destination is the
only one possible (to do so in FL, "=>" would need to be used instead of ":" after the
link type name; in OWL-based descriptions, owl#allValuesFrom can be used). Thus,
such links represent "default" relationships: if a link from a type T specializes a link from
a supertype of T, it overrides this inherited link. This is also true when the link type is
functional (i.e., when it can have only one destination) and its destination for T does not
specialize  the  destination  for  a  supertype  of  T. The  links  beginning  by  "rc_"  look
functional but are not: in FL, multiple destinations can be stated to indicate different
presentation possibilities. However, by convention, such links override inherited links of
the same types.  Table 5 shows how different kinds of "default presentations" can be
represented in concise ways.

Table 4.   Main links for defining a structure for abstract terms and specifying concrete terms.

Gterm   r_identifier_or_description of: 1 Thing,   //these link types are used in tables 6 to 10
   r_operator:  0..1 Operator ,   //see Table 10
   r_part:  0..* Gterm,  /* object parts or fct/relation arguments */      r_parts: 1 List,  //ordered
   r_result: 1 Gterm,  /* e.g., a phrase has for r_result a boolean */    rc_type:  Concrete_term,
   r_variable: 0..* Variable,     r_result of: 1...* Function;

rc_link_to_concrete-term   //and from an abstract term but also often from a concrete term
      _[/*from:*/Gterm, /*to*/Concrete_term]  //signature of this relation type
 >  (rc_begin-mark >  rc_operator_begin  rc_parts_begin)    (rc_separator  > rc_parts_separator)
      (rc_end-mark  > rc_operator_end  rc_parts_end )     rc_operator_name
      rc_infix-operator_position      rc_annotation_position; //-1: before

r_gTerm_part   r_type:  Transitive_relation_type,
  > (r_operator >  r_frame_source  rdf#predicate)   (r_phrase_part > rdf#subject  rdf#object )
     (r_parameter = r_part,  //"r_part" used for concision
         > (r_link_parameter   >  (r_link_source        >  rdfs#domain)
                                                (r_link_destination > rdfs#range) ) );

//r_parts permits to order the parts, this is sometimes needed for abstract terms and 
// this also permits to give a default order for presentation purposes.
r_parts _[?e,?list] :=>  [any  ^(Thing  r_member of: ?list)  r_part of: ?e];
r_parts _[?e,?list] :<=  [any  ^(Thing  r_part of: ?e)  r_member of: ?list];

/* Notes:  in FL,  ":=' permits to give a full definition,
 ":=>"  gives only "necessary conditions",   ":<=" gives only "sufficient conditions", 
 "^(" and ")" delimit a  lambda-abstraction (a construct defining and returning a type),
"_(" and ")" delimit the parameters of a function call,  "_[" and "]" delimit those of a definition,
 ".[" and "]" delimit  the elements of a list,   ".{" and "}" delimit the elements of a set.   */

rc_type _[?t,?rct] := [any ?t  rc_: 1..* ?rct]; //people who see concrete terms as specializations
                    // of abstract terms can still state:    rc_type <  subtype;       rc_   r_type:  instance;
                     //in the next function signature (i.e., in [...]), the variables are untyped

f_link_type  _[ ?operatorName,  ?linkType,  ?linkSourceType,  ?linkDestinationType ]
 :=  ^(Link   rc_operator_name: ?operatorName,    r_parts: .[ ?linkSource ?linkDestination],
                    r_operator: ?linkType,  r_result: 1 Truth_value,
                    r_link_source: 1 ?linkSourceType,   r_link_destination: 1 ?linkDestination );



Table 5.   Important structured concrete term types and definition of their default presentation.

Structured_concrete_term_that_is_not_a_string        //the delimiters in comments below permit a
 > exclusion             // KRL to have all these structures  and still only requires an LALR(1) parser
    { (List_cTerm  >   Enclosed_list_cTerm  /* e.g.,  .[A B C]  */ 
                                    Fct-like_list_cTerm    /* e.g.,  A ..[B C]  */  )
       (Set_cTerm   >   Enclosed_set_cTerm  /* e.g.,  .{A B C}  */
                                   Fct-like_set_cTerm     /* e.g.,  A ..{B C} */  )
       (Positional_cTerm   //e.g., with operator "f" and parts/parameters A, B and C
           rc_operator-name: "",   rc_operator_begin: "",   rc_operator_end: "",   //declared in Table 4
           rc_parts_begin: "(",      rc_parts_separator: "",   rc_parts_end: ")",  
           rc_infix-operator_position: 0,  //if not 0, it indicates the operator position within the parts 
           > exclusion 
              { (Fct-like-cTerm   
                    = exclusion { (Prefix_fct-like-cTerm  rc_parts_begin: "_(")          //e.g.,   f _(A B C)
                                           (Postfix_fct-like-cTerm  rc_parts_begin: "(_") } )     //e.g.,   (_ A B C)f
                 (List-like_fct_cTerm                                                                                               
                    = exclusion { (List-like_prefix-fct_cTerm   rc_parts_begin: ".(")    //e.g.,   .(f A B C)
                                           (List-like_infix-fct_cTerm   rc_parts_begin: "(.",                        
                                                                                       rc_operator_begin: ".")  //e.g.,   (. A B .f  C)
                                           (List-like_postfix-fct_cTerm rc_parts_begin: "(..")   //e.g.,   (.. A B C f)
                                        } )  } )
        (Frame_cTerm  //e.g., with operator type "f" and with parts two half-links of type r1 and r2 
            rc_operator-name: "",   rc_operator_begin: "",  rc_operator_end: "", 
            rc_parts_begin: "{",  rc_parts_separator: ",",  rc_parts_end: "}",   //as in JSON-LD
            rc_parts: 1..* Half-link_cTerm,
            > exclusion { (Prefix_frame_cTerm  rc_parts_begin: "_{")  //e.g.,  f_{ r1: A,   r2: B }
                                   (List-like_frame_cTerm   rc_parts_begin: "{.",                      
                                      > List-like_prefix-frame_cTerm                    //e.g.,  {. f   r1: A,   r2: B}
                                         List-like_infix-frame_cTerm )                    //e.g.,  {. r_id: f,  r1: A,   r2: B}
                                   (Postfix_frame_cTerm rc_parts_begin: "{_") //e.g.,   {_  r1: A,  r2: B } f
                                   Alternating-XML_cTerm   //Frame in the Alternating-XML style where
                                } )                  // concept nodes alternate with link nodes, as in RDF/XML 
        Cterm_with_named_arguments  //quite rare in KRLs, hence not detailed in this article
    };

fc_prefix-fct-like_type _[?notationSet, ?operator_name, ?begin_mark, ?separator, ?end_mark]
 :=  ^(Prefix_fct-like-cTerm   r_direct-or-indirect_part of: ?notationSet,  //uses of this function are
                                                 rc_operator-name: ?operator_name,          //  illustrated in Table 13
            rc_parts_begin: ?begin_mark,  rc_parts_separator: ?separator,  rc_parts_end: ?end_mark )

Phrase  //any phrase has at least these presentations in these 2 kinds of notations (see Table 2),
             // e.g., in RIF-PS and RIF-XML:
   rc_type:  ^(fc_prefix-fct-like_type _(.{Function-like_based_notation},"","(","",")")
                          rc_annotation-position: -1 )
                  ^(fc_alternating-XML_type_(.{XML_based_notation},"") rc_annotation-position: 0 );

List   rc_type:  fc_list_type _( .{Notation}, "[", "," ,"]" );  //by default, in any notation, a list has
                  // for representation a comma separated list of element delimited by square brackets;
                  // note that fc_list_type has no argument for an operator name



6   Ontology of KRL content models

Table 6.   Important top-level types of phrases.

//Note: names in italics come from RIF-FLD, names in bold italics are used in RIF-FLD signatures, 
// bold is for highlighting, "cl#' prefixes terms from Common Logics

Phrase <  ^(Gterm r_operator: 1 (Operator_type > (owl#Property  r_instance: r_binary_relation) ),
                               r_result: 1 (Truth_value  r_instance:  True  False  Indeterminate_truth-value) ),
  > (Phrase_not_referable_in_RIF-FLD   //→ cannot have an annotation in RIF-FLD
         > (Annotation  >  cl#Comment   (Formal_annotation > RIF_annotation) )   Module_directive
            (Annotating_phrase =  f_link_type_("",r_annotation,Gterm,Annotation))  Attribute  ),
  = exclusion
     { (Modularizing_phrase        // Phrases is the head element of a KRL grammar
           > (Phrases =  Grouped_phrases,   r_part: 0..* Phrase,   > cl#Text,
                 > (Module  > (Document  r_part:  0..1 Document_Directive   0..1 Phrases)  cl#Module,
                        r_part: 0..1 (Module_parts_that_are_directives  <  Module,
                                               >  (Module_header = f_link_type_("",r_header,Module,
                                                                                                           .[0..* Module_directive] ) ) )
                                    0..1 (Module_parts_that_are_not_directives =
                                                                     f_link_type_("Group",r_group,Module,.[0..* Phrases],
                                               <  Module,    >  Module_body   Group_of_phrases ),
                        r_parts: .[0..1 Module_header, 0..1 Module_body]  ) )
              (Module_directive  = f_link_type_("",r_relation,Module,Thing),
                 > (Module_name_directive = f_link_type_("Name",r_name,Module,Name) )
                    (Excluded_Gterm-reference_directive = f_link_type_("",r_excluded_gTerm,Module,
                                                                                                              .[1..* Gterm_reference]) )
                    (Document_directive 
                       > (Dialect_directive =  f_link_type_("Dialect",r_dialect,Module,Name))
                          (Base_directive     =  f_link_type_("Base",r_base,Module,Document_locator))
                          (Prefix_directive   =  f_link_type_("Prefix",r_prefix,Module,
                                                                                     NamespaceShortcut-DocumentLocator_pair))
                          (Import-or-module_directive  > cl#Importation,
                             > (Import_directive = f_link_type_("Import",r_imported-doc,Document,  
                                                                                         Imported_document_reference) )
                                (Remote_module = f_link_type_("Module",r_imported-module,Module,
                                                                                        Remote_module_reference) )
                          ) ) ) )
        (Non-modularizing_phrase   //including non-monotonic phrases: queries, removals, ...
           > (Formula  >  Positional_formula   Formula_with_named_arguments   
                                     Phrase_of_a_grammar   cl#Sentence,
                 = exclusion  //the 3 following distinctions come from KIF
                    { (Definition = exclusion { Non_conservative_definition  Conservative_definition } )
                       (Sentence  //fact in a world: formula assigned a truth-value in an interpretation
                          >  Belief  //the fact that someone believes in a certain thing
                              Axiom ) //sentence assumed to be true, from/by which others are derived
                       (Inference_rule> Production_rule) //like an implication but the conclusion is "true"
                    }                                                          // only if/when the rule is fired
                    near_exclusion{Composite_formula  Atomic_formula_or_reference_to_formula} ) )
              Termula_phrase /*RIF function/atomic_formula parameter; not detailed in this article*/  )
     }; 



Table 7.   A way to restrict this general model for specifying particular KRLs.

r_only_such_part_of_that_type _[?x ?pt]  //The source ?x has some parts of type ?pt but no other
  <  r_part _(?x ?pt),   // parts with type the genus of ?pt. The definition in the next line requires that
  := [?x  r_part:  1..* ?pt    0 ^(?t != ?pt,  < (?gpt  r_genus_supertype of: ?pt))];     // relations of type
 // r_genus_supertype are set by definitions. Thanks to this link type, to our general model for KRLs
// and to the default presentation associated to its abstract terms, KRLs can be defined in a very concise
// way.  Below are examples for some abstract terms of some KRLs. The next section gives examples
// for some concrete terms of some KRLs. For the Triplet_notation, nothing else is required.

RIF   r_only_such_part_of_that_type:   //RIF models have for part terms defined by these 6 lambdas:
  ^(Gterm_that_can_be_annotated_without_link > Phrase)   //-> only a phrase can be annotated
  ^(Grouped_phrases  r_part: 0..* Document)  
  ^(Quantification >  Classic_quantification)     ^(Frame > Minimal_frame)     ^(Collection > List)
  ^(Delimited_string >  Delimited_Unicode_string); 

RIF-BLD   r_only_such_part_of_that_type :      //the next two lambdas se are just  examples,
  ^(Rule_conclusion > rif-bld#Formula)              // RIF-BLD has other restrictions
  ^(Rule_premise  >  Connective_phrase_on_atomic_formulas   Conjunction_phrase);   

Triplet_notation = ^(KRL  r_only_such_part_of_that_type:
                                                    ^(Phrase > Link)    ^(Individual_gTerm > Constant_or_variable) );

Table 8.   Important types of composite formulas.

//Names in italics come from RIF-FLD, names in bold italics are used in RIF-FLD signatures

Composite_formula = f_relation_type_("",r_relation,.[1..* Formula]),  //-> r_part: 1..* Formula
  > exclusion 
     { (Formula_connective   r_operator_type:  1 connective_operator,   >  cl#Boolean_sentence,
           > exclusion  //e.g., Negative_formula, Production_rule, Logical_implication, ...
              { (Unary_connective_phrase  = f_relation_type_("",r_unary_relation,.[1..* Formula]) )
                 (Binary_connective_phrase  = f_relation_type_("",r_binary_relation,.[1..* Formula]) )
                 (Variable-n-ary_connective_phrase
                    = f_relation_type_("",r_variable-ary_relation,.[1..* Formula]),
                    >  exclusion { (Disjunction_phrase = f_relation_type_("Or",r_or,.[1..* Formula]))
                                            (Conjunction_phrase = f_relation_type_("And",r_and,.[1..* Formula]),
                                               > (Conjunction_of_links = f_relation_type_("And",r_and,Link),
                                                      > Frame_as_conjunction_of_links_from_a_same_source ) )   } ) 
              } )
        (Quantification = f_quantification_type_("",Quantifier,.[1 Type],Constant-or-variable,Formula),
            > (Classic_quantification = f_quantification_type_("",Quantifier,.[],Variable,Formula) )
                exclusion                                                                   //classic: no guard, no constant
                { (Universal_quantification 
                      = f_quantification_type_("Forall",q_forall,.[1 Type],Constant_or_variable,Formula),
                       > (Classic_universal_quantification 
                             = f_quantification_type_("Forall",q_forall,.[],Variable,Formula) ) )
                   Existential_quantification //defined the same way as for Universal_quantification 
                } ) };



Table 9.   Important types of relations between frames, links and positional formulas.

Atomic_formula_or_reference_to_formula   > exclusion
  { (Formula_reference  /* this is also an Individual_gTerm  */  
         > exclusion { Variable_for_a_formula 
                                 Reference_to_formula_in_remote_module  //with the same KRL
                                 Reference_to_externally_defined_formula 
                             } )                      //external: not in a module and not with the same KRL
     (Atomic_formula    //names in bold italics are used in RIF-FLD signatures
         > { Constant_for_a_formula
               (Atomic_formula_that_is_not_a_constant
                  > near_exclusion   //possible shared subtypes: subclass_or_equal, link
                     { (Positional-or-name-based_formula  
                            r_operator: 1 Termula,   >  cl#Atomic_sentence,
                            > exclusion { (Positional_formula  r_part: 1..* Termula)
                                                   (Name-based_formula  r_part: 1..* Name-Termula_pair) } ) 
                        (Equality_formula = f_link_type_("=",r_equal,Termula,Termula),  >  cl#Equation)
                        (Class-membership = f_link_type_("#",r_type,Termula,Termula) ) 
                        (Subclass_formula = f_link_type_("##",r_supertype,Termula,Termula) ) 
                        (Frame= (Frame_as_conjunction_of_links_from_a_same_source  ?f
                                            r_frame_head: 1 Termula ?fh,    r_part: (1..* Link  r_link_source: ?fh) )
                                        (Frame_as_head_and_half-links_from_head  ?f 
                                            r_operator: (1 Termula ?fh  r_frame_head of: ?f),
                                            r_part: (1..* Half_link  r_link_source: ?fh),
                                            > (Minimal_frame  r_part: 1..* Minimal_half-link) ) )
                     } )
                     (Binary_atomic_formula_that_is_not_a_constant
                        > (Link 
                              =  (Link_as_positional_formula  < Positional_formula,
                                      <  f_link_type_("",r_binary_relation_type,Termula,Termula),
                                      r_part of: (1 Frame ?f  r_frame_head: 1 Termula ?fh),  r_link_source: ?fh )
                                  (Link_as_frame_part   r_part of: (1 Frame ?f  r_frame_head: 1 Termula ?fh),
                                      r_operator: ?fh,   r_link_source: ?fh,   r_link_destination: 1 Termula ?ld,
                                      r_part: (1 Half_link   r_link_source: ?fh,   r_operator: ?fh,  r_parts: ?ld )
                            ) ) ) 
            } )  };

Table 10.   Important top-level types of "individual terms" (not phrases unless referring to one).

Individual_gTerm = near_exclusion              //names in italics come from RIF-FLD 
  { (Individual_concrete_term
        > Concrete-term_for_constant_or_name     Lexical-grammar_character-set     Character
            Concrete_list-like_term       (String >  (Delimited_string > Delimited_Unicode_string) ))
     (Individual_abstract_term
        > Abstract_individual_gTerm_not_referable_in_RIF-FLD   //Quantifier, Half_link, ...
            (Fterm_or_variable  >   (Functional_term   r_operator: 1 (Function_type <  Type) ) )
            Individual_abstract_term_of_a_grammar
            (Operator   >  r_relation  f_function   Operator_not_referable_in_RIF-FLD )
            (Symbol_space > rif#iri  rif#local  xs#string  xs#integer  xs#decimal  xs#double)  )    };



Table 11.   Important subtypes of one subtype of Individual_gTerm (see Table 10).

Concrete-term_for_constant_or_name                   //examples to show that the same approach
    > (Variable_name    r_identifier of: 1..* Variable,   //  also applies for concrete terms 
           <  ^(f_string_type_("?","","")  r_part: 1 Undelimited_variablename)  )
       (Constant_concrete_term  r_identifier: 1..* Constant_gTerm,
           > (Constant_concrete_term_without_symbolspace  
                   > (Constant_IRI  r_part: 1 IRI_reference )
                      (Constant_shortname_via_compact_URI  r_part: 1 Compact_URI) 
                      (Literal_or_datatype_concrete_term  r_identifier of: 1..* Literal_or_datatype,
                         > (Double_quoted_string  
                                   <  ^(f_string_type_('"','','"') 
                                             r_part:  1..* f_character_type_with_escape_for_(Character,"\\",'"') ))
                             (Numeric_literal 
                                  > (Positive_integer  <  ^(f_string_type ("+","","") r_part: 1..* Digit))
                                     (Negative_integer <   ^(f_string_type_("-","","") r_part: 1..* Digit)) ) ) ) ); 

Table 12.   One phrase in different notations; part of its abstract structure represented in UML.

In English: "There exists a car which is red  (one shade of red; it may also have other colors)".
In FE: `a Car with color a Red´.      In RIF-PS:  Exists ?car ?red  ( color( ?car#Car  ?red#Red ) )
In FL: a  Car   color :  a Red ;         In RIF-PS:  Exists ?car ?red  ?car#Car [ color -> ?red#Red ].
In N-Triples:   Car8 color Red3 .    Car8 type  Car .     Red3 type Red .   

                                                             Language-element = Gterm
                                                                               ^       
                                                                                                                         
                                   Abstract_phrase                                        Individual_gTerm  
                                              ^                                                                       ^
                                                                                                                             
 Quantification   Conjunction_phrase   Atomic_formula       Fterm_or_variable    Operator
                   ^                              ^                          ^                           ^           ^                       ^

Existential_quantification   Frame  r_part  1    Link    Functional_term           Link_operator
                                                                                               Gterm_reference
                                                                                                           ^            ^

                                Link__A-car-with-color-a-red      Concept-type    Relation-type 

                                    part                                                            part 

Existential-quantification__a-Red    part     Concept-type__Red                  Link-operator__color

                                                                                                                                 part
Legend (+ see Table 1) :
                :  instance link                                                           Relation-type__color

 

 

 

 

 

 

 

 

 



7   Ontology of Particular KRLs and Grammars

In a KRL that is "perfectly regular with respect to a particular kind of abstract/concrete
term" allows all the terms of this kind to be (re-)presented in the same way, e.g., all the
terms which in our approach have an operator (the "operator based terms"). A perfectly
regular KRL is then one which is perfectly regular for all the kinds of terms it allows.
The "Triplet notation" is perfectly regular. To be so, a more expressive KRL would have
to be fully  based  on an ontology and  be HOL based.  Since  KIF re-uses  the  LISP
notation, it  is  perfectly  regular  with respect  to "operator  based concrete  terms" and
"concrete terms for collections". Most KRLs have some ad hoc abstract and concrete
terms. E.g., in RIF-XML, document directives are presented in different ways: some via
links, some via XML attributes. In RIF-PS, they are presented as positional terms but
not links. Thanks to the fact that our general model represents the directives both as
parts  and  links  (see  Table  6),  these  RIF  predefined  directives  can  be  represented
within/via frames as well as via positional terms. The first part of Table 13 shows how
ad hoc concrete terms of particular types of KRLs can be specified in a  concise way.
The approach used to do so for abstract terms (see Table 7) is here re-used. Thus, both
abstract and concrete terms of a KRL – or a family of KRLs – can be specified at the same
time and in a concise way. Furthermore, since (families of) KRLs and their specifications
can be organized by specialization relations, they can be formally and visually compared.

The second part of Table 13 shows how it is possible to declaratively specify all the
presentations of a type of abstract term by an ordered list of concrete terms, given a type
of presentation and the list of usable notation types. Since the function fc_r_parts is
recursive and, in turn, uses the same kinds of specifications (via links of type rc_parts
or, for non-structured terms, links of type rc_), the specified ordered list only contains
strings. Finally, given the value of rc_separator between tokens in the given notation
(i.e., the kinds of space characters separating them), the kinds of strings that can be
associated  to  this  collected  list  are  specified.  Thus,  the  whole specification  is  fully
declarative. However, for concrete term generation purposes, choices have to be made,
e.g., about space indentation. In our system, this is implemented via generation functions
(also included in our ontologies) which recursively navigate the abstract and concrete
specifications to find the most precise relevant specifications. Since our system rejects
the entering of ambiguous knowledge  –  e.g., the entering of different concrete term
specifications for a same type of abstract term and the same type of notation – finding
the most precise relevant specifications was easy to implement. 

Specifying parsing rules and generating them – given an abstract term and a grammar
notation – can be represented using the same techniques.  The first part of Table 14
shows the beginning of an ontology for grammars. The second part shows an example
of grammar rule  (and its connection to a grammar but this part actually needs not be
generated). Once the grammar rules are  generated – in a way similar to presentation
generation – the generation of  their presentation is then done exactly as for any other
statement, according to the given grammar notation.

Our ontologies can be represented with KRLs having at least OWL-2 expressiveness.
To  that  end,  r_parts  links  with  "lists  with  cardinalities"  (e.g.,  .[0..1  Y,  1..*  Z])  as
destinations can be replaced by lists without cardinalities (e.g., .[Y, Z]) as long as r_part
links are also used for specifying the cardinalities (e.g., X r_part: 0..1 Y, 1..* Z ). The
use of functions may also be avoided via macros, i.e., by expanding function definitions.



Table 13.   Ways to specify concrete terms for particular kinds of terms in particular notations.

//Thanks to the default values in our specifications for abstract and concrete terms, only the
// following lines are needed for  defining the presentation in RIF-PS of the abstract terms shared
// by the  KRLs of the RIF family. For instance, the order and operator names of the directives of
// a document can be found in Table 6. Since these directives follow the default presentation for
// phrases in RIF-PS, nothing needs to be specified about them here. The abstract term restrictions
// can be specified here (as  illustrated below for "Frame" or separately, as illustrated by the 
// second part of Table 6.

RIF    r_only_such_part_of_that_type:   //default values make the next lines sufficient
 ^(Phrase  rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"","(","",")") )  //default style in RIF_PS
 ^(RIF_annotation  rc_type: fc_list_type_(.{RIF-PS},"(*","","*)"))   //override for  annotations
 ^(Quantification_bound_list  rc_type: fc_list_type_(.{RIF-PS},"","",""))
 ^(Rule rc_type: fc-like_infix-fct_type_(.{RIF-PS},":-","","",""))  
 ^(Externally_defined_term  rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"External","(","",")"))
 ^(Equality_formula  rc_type: fc_list-like_infix-fct_type_(.{RIF-PS},"=","","",""))
 ^(Subclass_formula rc_type: fc_list-like_infix-fct_type_(.{RIF-PS},"##","","","")) 
                                    //e.g., "?t1 ## ?t2";  in FL: "?t1 < ?t2"
 ^(Class-membership_formula  rc_type: fc_list-like_infix-fct_type_(.{RIF-PS},"#","","",""))
 ^(Frame > Minimal_frame,   rc_type: fc_infix_list-like_frame_type_(.{RIF-PS},"","[","","]") )  
 ^(Half_link rc_type: fc_half-link_type_(.{RIF-PS},"","","->","",""))
 ^(Name-Termula_pair  rc_type: fc_list_type_(.{RIF-PS},"","->",""))
 ^(Open_list    rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"List","(","|",")"))
 ^(Open-list_rest rc_type: fc_list_type_(.{RIF-PS},"","","",""))
 ^(Aggregate_function rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"","{","|","}"))
 ^(Aggregate_function_bound_list rc_type: fc_fct-like_list_cTerm_(.{RIF-PS},"[","",]""));

RIF-FLD    r_only_such_part_of_that_type:    //only 1 example: a document in RIF-FLD/XML
  ^(Document  rc_type:  (1 fc_alternating-XML-cTerm_type_(.{RIF-XML},"Document") 
                                               rc_annotation-position: 0, 
                                               rc_XML-attribute_type:  r_dialect  xml#base  xml#prefix,
                                               rc_XML-link_types: .[rif#directive rif#payload] ) );

JSON-LD_model   r_only_such_part_of_that_type:   //specifies also the JSON-LD notation
 ^(Phrase  rc_type:  fc_list-like_infix-frame_type_(.{JSON-LD},"","{",",","}")) 
 ^(Half_link rc_type: fc_half-link_type_(.{JSON-LD},"",":","",""))
 ^(Module_header  rc_type: fc_list-like_infix-frame_type_(.{JSON-LD},'"@context:"',"{",",","}"))
 ^(Module_body   rc_type: fc_list_type_(.{JSON-LD},"","",",""))
 ^(Formula  >  ^(Minimal_frame  r_operator: 1 Constant_gTerm))   //only 1 destination per link
 ^(Fterm_or_variable >  Constant_or_set_or_closed_list)
 ^(Set  rc_type: fc_list_type_(.{JSON-LD},"[",",","]"))  //in classic JSON, this would be for a list
 ^(Closed_list  > ^(Frame  r_part: 1 .[r_container, Closed_list],   
                                    rc_type: fc_half-link_type_(.{JSON-LD},"","@container",":","@list","") )
                            ^(Frame  r_part: .[r_list, 1 Set],  //2nd way to represent a closed list in JSON-LD
                                            rc_type: fc_half-link_type_(.{JSON-LD},"","@list",":","","") ) );

//Another kind of specification ("^?" prefixes variables that are implicitly universally quantified):
^(Thing ?t    rc_:  (a Enclosed_list_cTerm ?c   r_KRL-set:  ^?notationSet))  
  rc_parts:  f_remove_empty_elements_in_list _( .[ (^?cb  rc_begin_mark  of: ?c),  
                              fc_r_parts_(?notationSet, (^?tp r_parts of: ?t), (^?cs rc_parts_separator of: ?c))
                              (^?cb  rc_end_mark of: ?c) ]  );



Table 14.   Important links from Grammar_element, followed by an example of grammar head rule.

Grammar_element    //specifications mainly only for  EBNF-like and Lex&Yacc-like grammars
    r_part  of: 1..* Grammar,      //and conversely:    Grammar   r_part:   1..* Grammar_element;

    > exclusion
       { (Phrase_of_a_grammar   >  Head_grammar-rule,
               =  exclusion{Non-lexical-grammar_rule   Lexical-grammar_rule} )
          (Individual_gTerm_of_a_grammar 
               = exclusion{  Lexical-grammar_individual-gTerm  //what Lex grammars handle
                                      Non-lexical-grammar_individual-gTerm } ) };

 Non-lexical-grammar_rule  =  NLG_rule,         //this is a beginning but the representation
    r_part:   1 NLG_rule_left-hand-side    1 NLG_expression            // of the whole grammar 
                  0..1 (Parsing_action_phrase < Phrase),                            // is similar 
    rc_:  (1 fc_list_type_(.{W3C-EBNF,XBNF,Grammar},"","","")  
                  //fc_list_type is like fc_prefix-fct-like-cTerm_type but without operator as parameter
                 rc_parts: .[NLG_rule_left-hand-side "::=" NLG_expression] )  
                                                                   //→"A::=B"  ("Grammar "→default presentation)
            (1 fc_list_type_(.{ISO-EBNF},"","","")                                                
                 rc_parts:  .[NLG_rule_left-hand-side "=" NLG_expression] )
                                                                  //→ "A = B" in ISO-EBNF
            (1 fc_list_type_(.{Yacc, Bison},"","","") 
                 rc_parts:  .[NLG_rule_left-hand-side ":" NLG_expression] );    
                                                                   //→ "A : B" in Yacc or Bison (without parsing actions)

Grammar_for_RIF_FLD_in_RIF-PS  <  Grammar, 
   r_description of:  1..* (RIF-FLD < (KRL_model  r_part of: 1..* KRL)),
   r_part: 1 (fc_NLG_rule_type_( .{RIF-PS},  "RIF-FLD_document",  
                                                       .[ 0..1 Annotation   "Document"   "("    0..1 Dialect_directive 
                                                          0..1 Base_directive    0..* Prefix_directive
                                                          0..* Import_directive   0..*  Remote_module_directive
                                                          0..1 Group  ")"  ] )
                        <   Head_grammar-rule );

Replicating our work does not require details on the implementation of our system:
our ontologies are the required declarative code. The used inference engine is irrelevant
as long as it can handle the specifications. However, some readers might be interested to
know that our translation server  exploits the parser available at  http://goldparser.org
while its inference engine was implemented in Pascal Object (for portability purposes)
and exploits "tableaux decision procedures" [24]. This server and its inference engine
have recently been designed by GTH (http://www.mitechnologies.net). This work on a
generic approach for handling KRLs comes from the many problems encountered to
handle  various  versions  of  FL and  other  KRLs  in  the  knowledge  sharing  servers
WebKB-1 [25] and WebKB-2 [17] [20].

Our ontology of KRL ontologies (i.e., its core and the specifications of particular
KRLs) and our translation server are accessible from http://www.webkb.org/KRLs/. Its
interface is similar to Google Translate except that the input and output languages are
KRLs and, instead of KRL names, KRL specifications can also be given by the users.



8   Conclusions

One contribution of this article is a generic model for structured abstract or concrete
terms. It is simple: only a few types of links and a few distinctions (tables 4 and 5). This
operator+parameters based model permits to define terms in a concise and flexible way,
and thus also their presentation and parsing.

A second  contribution  is  the  design  of  a  KRL model  ontology by  representing,
aligning and extending various KRL models, and defining their elements via the above
cited few links, as illustrated by tables 3 and 6-11. Thus, the merged models are also
easier to re-use.

A third one is the design of a KRL notation ontology – to our knowledge, the first
one – based on the above two cited contributions, as illustrated by tables 5, 13 and 14.

These  three  contributions  permit  to  avoid  or  reduce  the  problems  listed  in  the
introduction  and  Section  2:  those  of  KRL  syntactic  translation,  KRL  parser
implementation, dynamic extension of notations, etc. Thus, we provide an ontology-
based concise alternative to the use of XML as a meta-language for easily creating KRLs
that follow KRL ontologies. Therefore, this also complements GRDDL and can be seen
as a new research avenue (GRDDL permits to specify where a software agent can find
tools – typically XSLT ones – to convert a given KRL to RDF/XML). This avenue is
important given the frequent need for applications to  i) integrate or easily import and
export from/to an ever growing number of models and notations (XML-based or not),
and  ii) let the users parameter these notations.

Previous attempts (by the second author of this  article) based on directly extending
EBNF  –  or  directly  representing  or  generating  concrete  terms  in  a  KRL  or
transformation language – required much lengthier specifications that were also more
difficult to re-use.

Besides  its  translation  server,  the  GTH  company  will  use  this  work  in  its
applications for them to i) collect and aggregate knowledge from knowledge bases, and
ii) enable end-users to adapt the input and output formats they wish to use or see. The
goal behind these two points is to make these applications – and the ones they relate –
more (re-)usable, flexible, robust and inter-operable. 

One theme of our future work on this approach will be  the  generation of parsing
actions in parsing rules,  given particular  ADTs to use. A second theme will be the
representation and integration of more abstract models and notations for KRLs as well
as query languages and programming languages. A third theme will be the extension of
our notation ontology into a full presentation ontology with concepts from style-sheets
and, more generally, user interfaces.
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